Tính P= \(\frac{9^{70}\times2^{74}-16}{3^{72}\times6^{70}-9}\) Tính giùm mình nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1.2.3.4...9-1.2.3.4...8-1.2.3.4...8.8
=1.2.3.4...8(9-1-8)
=1.2.3.4...8.0
=0
b)(3.4.216)2/11.123.411-169=(3.22.216)2/11.213.222-236=32.24.232/11.235-236=32.226/235.(11-2)
=32.236/235.9=32.236/235.32=2
c)70.(131313/565656+131313/727272+131313/909090
=70.(13/56+13/72+13/90)
=70.39/70=39
d)1/4.9+1/9.14+1/14.19+...+1/64.69
=4/4.9.4+4/9.4.14+4/14.19.4+...+4/64.69.4.
=1/4.(4/4.9+4/9.14+4/14.19+...+4/64.69)
=1/4.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)
=1/4.(1/4-1/69)
=1/4.65/276=65/1104
~~~~~~~~Chúc bạn học giỏi nhé !~~~~~~~~
Ta có : S = \(\frac{5.2^{30}.6^3.3^{15}-2^3.8^9.3^{17}.21}{21.2^{29}.3^{16}.4-2^{29}.\left(3^4\right)^5}=\frac{5.2^{30}.\left(2.3\right)^3.3^{15}-2^3.\left(2^3\right)^9.3^{17}.3.7}{3.7.2^{29}.3^{16}.2^2-2^{29}.3^{20}}=\frac{5.2^{33}.3^{18}-2^{30}.3^{18}.7}{3^{17}.7.2^{31}-2^{29}.3^{20}}\)
\(=\frac{2^{30}.3^{18}.\left(5.2^3-7\right)}{3^{17}.2^{29}.\left(7.2^2-3^3\right)}=2.3.33=198\)
\(\frac{5\times4^{15}-9^9-4\times3^{20}\times8^9}{5\times2^9\times6^{19}-7\times2^{29}\times27^6}\)
\(=\frac{2^{29}\times3^{18}\times\left(2\times5-3\right)}{2^{28}\times3^{18}\times\left(5\times3-7\times2\right)}=2\)
Ta có :
\(S=\frac{5\times2^{30}\times6^2\times3^{15}-2^3\times8^9\times3^{17}\times21}{21\times2^{29}\times3^{16}\times4-2^{29}\times\left(3^4\right)^5}\)
\(S=\frac{5\times2^{30}\times2^2\times3^2\times3^{15}-2^3\times2^{27}\times3^{17}\times3\times7}{3\times7\times2^{29}\times3^{16}\times2^2-2^{29}\times3^{20}}\)
\(S=\frac{5\times2^{32}\times3^{17}-2^{30}\times3^{18}\times7}{7\times2^{31}\times3^{17}-2^{29}\times3^{20}}\)
\(S=\frac{2^{30}\times3^{17}\times\left(5\times2^2-3\times7\right)}{2^{29}\times3^{17}\times\left(2^2\times7-3^3\right)}\)
\(S=\frac{2^{30}\times3^{17}\times\left(-1\right)}{2^{29}\times3^{17}\times1}\)
\(\Rightarrow S=-2\)
Ko viết đề :)
\(S=\frac{5\cdot2^{30}\cdot2^2\cdot3^2\cdot3^{15}-2^3\cdot2^{27}\cdot3^{17}\cdot3\cdot7}{3\cdot7\cdot2^{29}\cdot3^{16}\cdot2^2-2^{29}\cdot3^{20}}\)
\(=\frac{5\cdot2^{32}\cdot3^{17}-2^{30}\cdot3^{18}\cdot7}{3^{17}\cdot7\cdot2^{31}-2^{29}\cdot3^{20}}\)
\(=\frac{2^{30}\cdot3^{17}\left(5\cdot2^2-3\cdot7\right)}{2^{29}\cdot3^{17}\left(7\cdot2^2-3^3\right)}\)
\(=\frac{2\left(20-21\right)}{28-27}\)
\(=\frac{40-42}{1}=-\frac{2}{1}=-2\)
Vậy S= -2
\(\frac{1.2.6.4.6.4.5.2}{2.3.6.8.6.2.2.2.8.10}=\frac{1}{96}\)
\(\frac{12}{35}:\frac{35}{25}=\frac{12}{35}.\frac{25}{35}=\frac{12.25}{35.35}=\frac{12.5.5}{7.5.7.5}=\frac{12}{49}\)
\(\frac{9}{22}.\frac{33}{18}=\frac{9.33}{22.18}=\frac{9.3.11}{11.2.9.2}=\frac{3}{4}\)
A) \(\frac{1}{6}\) = 0,1666666665
B) 0,1666669167
\(\frac{1}{6}\) < \(\frac{111111}{666665}\)
Bạn lấy tử chia cho mẫu là ra
\(P=\dfrac{3^{140}\cdot2^{74}-2^4}{3^{72}\cdot3^{70}\cdot2^{70}-3^2}=\dfrac{2^4\left(3^{140}\cdot2^{70}-1\right)}{3^2\left(3^{140}\cdot2^{70}-1\right)}=\dfrac{16}{9}\)