K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....

14 tháng 12 2016

sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo

a) Xét ΔAHB vuông tại H và ΔDHB vuông tại H có 

BH chung

AH=DH(gt)

Do đó: ΔAHB=ΔDHB(hai cạnh góc vuông)

a: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

HB chung

HA=HD

Do đó: ΔAHB=ΔDHB

b: Xét ΔACH vuông tại H và ΔDCH vuông tại H có

HC chung

HA=HD

Do đó: ΔACH=ΔDCH

Suy ra: \(\widehat{ACH}=\widehat{DCH}\)

hay CB là tia phân giác của góc ACD

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm của AD

H là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: DE//AB

c: Xét ΔEAD có 

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

Xét ΔEAC và ΔEDC có

EA=ED

EC chung

AC=DC
Do đó: ΔEAC=ΔEDC

Suy ra: \(\widehat{EAC}=\widehat{EDC}\)

7 tháng 1 2022

GT,KL tự viết (hình cũng tự vẽ)

a, Xét △AHB và △AHE có :

AH : chung

\(\widehat{AHB}=\widehat{AHE}(=90^o)\)

HB = HE (GT)

=>  △AHB = △AHE (c.g.c)

b, Xét  △AHB và △DHE có :

AH = DH(GT)

\(\widehat{AHB}=\widehat{DHE}(=90^o)\)

BH = EH (GT)

=> △AHB =  △DHE (c.g.c)

=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> DE // AB

c, Xét △AHC và △DHC có :

HC : chung

\(\widehat{AHC}=\widehat{DHC}(=90^o)\)

AH = DH (GT)
=> △AHC = △DHC (c.g.c)

=> AC = DC (2 cạnh tương ứng)

 \(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)

Xét △EAC và △EDC có :

EC : chung

\(\widehat{ECA}=\widehat{ECD}(cmt)\)

AC = DC (cmt)

=> △EAC = △EDC (c.g.c)

=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)

d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)

Xét △MEN và △DEA có :

\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)

\(\widehat{EMN}=\widehat{EDA}( so le)\)

=> △MEN = △DEA  (c.g.c)

=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)

Mà 2 góc ở vị trí đối đỉnh với nhau 

=> A , E , N thẳng hàng

22 tháng 10 2023

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

c: Xét ΔCAD có

CH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔEAD có

EH là đường cao, là đường trung tuyến

Do đó: ΔEAD cân tại E

=>EA=ED

Xét ΔCAE và ΔCDE có

CA=CD

AE=DE

CE chung

Do đó; ΔCAE=ΔCDE

=>\(\widehat{EAC}=\widehat{EDC}\)

d: Xét ΔNEA và ΔMED có

\(\widehat{NEA}=\widehat{MED}\)

EA=ED

\(\widehat{NAE}=\widehat{MDE}\)

Do đó: ΔNEA=ΔMED

=>AN=MD

CN+NA=CA

CM+MD=CD

mà CA=CD và AN=MD

nên CN=CM

Xét ΔCAD có CN/NA=CM/MD

nên NM//AD

=>NM\(\perp\)BC

e: Xét tứ giác AIDK có

AI//DK

AI=DK

Do đó: AIDK là hình bình hành

=>AD cắt IK tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của KI

=>K,H,I thẳng hàng