so sánh : \(\sqrt{7}-\sqrt{5}\) và \(\sqrt{5}-\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{5}+1-\sqrt{5}=1\)
\(B=\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
Do đó: A=B
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}=\left|\sqrt{5}+1\right|-\sqrt{5}=1\)
\(\sqrt[3]{7+5\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}\right)^3+1^3+3.2+3\sqrt{2}}-\sqrt{2}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt{2}=\sqrt{2}+1-\sqrt{2}=1\)
--> Bằng nhau
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
\(\left(\sqrt{8}+\sqrt{5}\right)^2=13+2\sqrt{40};\left(\sqrt{7}-\sqrt{6}\right)^2=13-2\sqrt{42}\\ 2\sqrt{40}>0>-2\sqrt{42}\\ \Leftrightarrow13+2\sqrt{40}>13-2\sqrt{42}\\ \Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2>\left(\sqrt{7}-\sqrt{6}\right)^2\\ \Leftrightarrow\sqrt{8}+\sqrt{5}>\sqrt{7}-\sqrt{6}\)
Ta có:
\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)
\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)
Làm câu S tương tự như này rồi đối chiếu kết quả nha
Đặt:
\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(\left|1+\sqrt{5}\right|+\left|\sqrt{5}-1\right|\right)\)
\(A=\dfrac{1}{\sqrt{2}}\left(1+\sqrt{5}+\sqrt{5}-1\right)\)
\(A=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
Ta có: \(A^2=\left(\sqrt{10}\right)^2=10\)
\(B=\left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
Mà: \(4\sqrt{5}>1\)
Nên: \(A^2< B^2\)
\(\Rightarrow A< B\)
Đặt \(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}+1+\sqrt{5}-1\right)=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
=>A^2=(căn 10)^2=10=9+1
Đặt B=2+căn 5
=>B^2=(2+căn 5)^2=9+4căn 5
1<4căn 5
=>9+1<9+4căn 5
=>A^2<B^2
=>A<B
a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)
b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)
\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)
mà -1512>-2058
nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)
a) Ta có \(5=\sqrt{25}\)
Vì \(\sqrt{25}>\sqrt{11}\) nên \(5>\sqrt{11}\)
b) Ta có \(4=\sqrt{16}\)
Vì \(\sqrt{13}< \sqrt{16}\) nên \(\sqrt{13}< 4\)
c) Ta có \(-7=-\sqrt{49}\)
Vì \(-\sqrt{49}< -\sqrt{43}\) nên \(-7< -\sqrt{43}\)
d) Ta có \(-5=-\sqrt{25}\)
Vì \(-\sqrt{21}>-\sqrt{25}\) nên \(-\sqrt{21}>-5\)
ta có :
\(\sqrt{7}-\sqrt{5}=\frac{7-5}{\sqrt{7}+\sqrt{5}}=\frac{2}{\sqrt{7}+\sqrt{5}}< \frac{2}{\sqrt{5}+\sqrt{3}}=\sqrt{5}-\sqrt{3}\)
vậy \(\sqrt{7}-\sqrt{5}< \sqrt{5}-\sqrt{3}\)