\(x^2+4x-y^2+4\)
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: x2+y2-2x+4y+5=0
⇌(x-1)2+(y-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b. Ta có: 4x2+y2-4x-6y+10=0
⇌ (2x-1)2+(y-3)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\end{matrix}\right.\)
c.Ta có: 5x2-4xy+y2-4x+4=0
⇌(2x-y)2+(x-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)
d.Ta có: 2x2-4xy+4y2-10x+25=0
⇌ (x-2y)2+(x-5)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=5\end{matrix}\right.\)
Ta có :
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left[x^2-2.x.2+2^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(x=2\) và \(y=\frac{1}{2}\)
Chúc bạn học tốt ~
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy
https://diendantoanhoc.net/topic/142764-x%C3%A9t-h%E1%BA%B1ng-%C4%91%E1%BA%B3ng-th%E1%BB%A9c-x14x44x36x24x1-l%E1%BA%A7n-l%C6%B0%E1%BB%A3t-cho-x-b%E1%BA%B1ng-123n-r%E1%BB%93i-c%E1%BB%99ng-t%E1%BB%ABng-v%E1%BA%BF-n-%C4%91/
Vào link này xem nhé!!!!!!
1) \(x^4-3x^2-x+3\)
\(=x\left(x^3-1\right)-3\left(x^2-1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)-3\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+x^2+x-3x-3\right)\)
\(=\left(x-1\right)\left(x^3+x^2-2x-3\right)\)
2) \(3x+3y-x^2-2xy-y^2\)
\(=3\left(x+y\right)-\left(x^2+2xy+y^2\right)\)
\(=3\left(x+y\right)-\left(x+y\right)^2\)
\(=\left(x+y\right)\left(3-x-y\right)\)
3) \(x^4-x\)
\(=x\left(x^3-1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\)
4) \(x^2+5x+4\)
\(=x^2+x+4x+4\)
\(=x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x+4\right)\)
5) \(4x^2+4x-8\)
\(=4\left(x^2+x-2\right)\)
\(=4\left(x^2-x+2x-2\right)\)
\(=4\left[x\left(x-1\right)+2\left(x-1\right)\right]\)
\(=4\left(x-1\right)\left(x+2\right)\)
6) \(x^2+x-42\)
\(=x^2-6x+7x-42\)
\(=x\left(x-6\right)+7\left(x-6\right)\)
\(=\left(x-6\right)\left(x+7\right)\)
( x2 - 4x + 2 )2 + ( x2 - 4x -4 ) = 0
( x2 - 2 )2 - ( x2 + 4x +4 ) = 0
( x2 - 2 )2 - ( x2 + 2 )2 = 0
(x2 -2 - x2 -2 ).( x2 -2 + x2 +2 ) = 0
-4 . 2x2 =0
-8x2 = 0
x2 = 0
=> x = 0
Vậy x=0
\(\left(x^2-4x+2\right)^2+x^2-4x-4=0\)
<=> \(\left(x^2-4x+2\right)^2+\left(x^2-4x+2\right)-6=0\)
Đặt: \(x^2-4x+2=t\)khi đó pt trở thành:
\(t^2+t-6=0\)
<=> \(\left(t-2\right)\left(t+3\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-3\end{cases}}\)
đến đây về pt bậc 2 bạn tự làm nhé
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)