Giúp mk bài này nhé các bạn (ko cần hình đâu)
Gọi O là trung điểm chung của HI và MN. Chứng minh:
a) Tam giác HON=tam giác IOM
b) HN // MI và HM //NI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn học hình thang rồi chứ
a,Xét tam giác ABC có: E là tđ của AB
D là tđ của AC
=> ED là đường TB của tam giác ABC
=> \(ED=\frac{1}{2}BC\left(1\right)\),ED//BC
Xét hình thang EDCB(ED//BC) có M là tđ của BE, N là tđ của CD
=> MN là đường TB của hình thang EDCB
=> MN//BC. Mà I,K nằm trên MN
=> MK//BC, NI//BC
Xét tam giác ECB có: M là tđ của EB, MK//BC
=> K là tđ của CE
C/m tương tự ta có
I là tđ của BD
Xét tam giác ECB có M là tđ của BE, K là tđ của CE
=> MK là đường TB của tam giác EBC
=>\(MK=\frac{1}{2}BC\left(2\right)\)
C/m Tương tự ta có
\(IN=\frac{1}{2}BC\left(3\right)\)
Từ (1),(2),(3)=> đpcm
b, theo a ta có :M là tđ của BE
N là tđ của CD
Dễ dàng c/m đc MI là đg TB của tam giác BED(M là tđ, I là tđ)
=> MI// và =\(\frac{1}{2}ED\left(1\right)\)
C/m T2 ta có:
\(KN=\frac{1}{2}ED\left(2\right)\)
(Ta áp dụng t/c:Trong HT có 2 cạnh bên ko //, đoạn thẳng nối tđ 2 đg chéo thì // với đáy và = \(\frac{1}{2}\) hiệu 2 đáy)
Ta có: I là tđ của BD,K là tđ của CE
=>\(IK=\frac{BC-ED}{2}=\frac{2ED-ED}{2}=\frac{1}{2}ED\left(3\right)\)
Từ (1),(2),(3)=> đpcm
các bn thấy đúng tk cho mk nha
Đề thiếu rồi bạn