cho M=a^2 + 3a +1 với a là số nguyên dương .Chứng minh mọi ước của M đều là số lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử ước của M là số chẵn thì \(M=2.k\Leftrightarrow a^2+3a+1=2k\)
Ta thấy \(a^2+3a+1=a\left(a+1\right)+2a+1\)
a(a + 1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2. Vậy thì a(a + 1) + 2a chia hết cho 2.
Vì 2k chia hết cho 2, a(a + 1) + 2a cũng chia hết cho 2 nên 1 chia hết 2 (vô lý)
Vậy nên mọi ước của M đều là số lẻ.
b) Đặt \(a=5u+v\left(u\in N;0\le v\le4\right)\)
Khi đó \(M=\left(5u+v\right)^2+3\left(5u+v\right)+1\)
\(=25u^2+10uv+v^2+15u+3v+1\)
\(=\left(25u^2+10uv+15u\right)+v^2+3v+1\)
Để M chia hết 5 thì \(v^2+3v+1⋮5\)
Với \(0\le v\le4\), ta thấy chỉ có v = 4 là thỏa mãn.
Vậy \(a=5u+4\left(u\in N\right)\)
c) Để M là lũy thừa của 5 thì \(a=5u+4\left(u\in N\right)\)
\(\Rightarrow M=\left(5u+4\right)^2+3\left(5u+4\right)+1\)
Với n chẵn, a có tận cùng là chữ số 4. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Với n lẻ, a có tận cùng là chữ số 9. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Vậy không tồn tại số a để M là lũy thừa của 5.
đây là đề thi tuyển sinh lớp 10 chuyên trường PTNK-ĐHQG-TP.Hồ Chí Minh(vòng 2) năm 2013-2014 ak
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
Các khẳng định: 1. Ước nguyên tố của 30 là 5 và 6. - Khẳng định này là sai, vì ước của 30 là 1, 2, 3, 5, 6, 10, 15, 30. 2. Tích của hai số nguyên tố bất kì luôn là số lẻ. - Khẳng định này là sai, ví dụ: 2 và 3 là hai số nguyên tố nhưng tích của chúng là số chẵn. 3. Mọi số nguyên tố đều là số lẻ. - Khẳng định này là sai, vì số nguyên tố duy nhất là số 2 là số chẵn. 4. Mọi số chẵn đều là hợp số. - Khẳng định này là đúng, vì một số chẵn bao gồm ít nhất hai thừa số riêng biệt (2 và số chẵn đó) nên nó là hợp số. 5. Ước nguyên tố nhỏ nhất của số chẵn là 2. - Khẳng định này là đúng, vì một số chẵn luôn có ước nguyên tố chung là số 2.
Khẳng định 1 sai vì 30 = 2.3.5 nên có ước nguyên tố là 2; 3; 5
Khẳng định 2 sai vì 2 và 3 là số nguyên tố nhưng 2.3=6 là số chẵn
Khẳng định 3 sai vì 2 là số nguyên tố nhưng 2 là số chẵn
Khẳng định 4 sai vì 2 là số chẵn nhưng 2 là số nguyên tố
Giả sử a là số chẵn thì a^2 là chẵn, 3a cũng là số chẵn => M = a^2+3a+1 là số lẻ ( Vì chẵn + chẵn +lẻ = lẻ ) => Mọi ước của M đều phải lẻ
Giả sử a là số lẻ thì a^2 là lẻ, 3a cũng là số lẻ => M = a^2+3a+1 là số lẻ ( Vì lẻ + lẻ + lẻ = lẻ ) => Mọi ước của M đều phải lẻ