K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

x2 +y2 >=2xy =>x 2 + y2 + y2+x2 >=(x+y)2 . Dấu bằng xảy ra khi x=y

=>2(x2 + y2)>=(x+y)2

thay x+y=\(\sqrt{10}\)

ta có :

2P>=10 => P>=5 dấu băng xảy ra <=>x=y=\(\sqrt{2.5}\)

4 tháng 6 2017

Áp dụng BĐT Bunhiacopxki 2(a2+b2)\(\ge\)(a+b)2 vào 2 số dương x,y ta có:

2(x2+y2)\(\ge\)(x+y)2=(\(\sqrt{10}\))2=10(x+y=\(\sqrt{10}\))

=>P=x2+y2\(\ge\)5

Dấu "=" xảy ra khi:x=y

mà x+y=\(\sqrt{10}\)=>x=y=\(\dfrac{\sqrt{10}}{2}\)

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{49}{16}\)

\(M_{min}=\dfrac{49}{16}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{\sqrt{7}};\dfrac{2}{\sqrt{14}};\dfrac{2}{\sqrt{7}}\right)\)

13 tháng 12 2020

cm bn

NV
12 tháng 12 2020

\(M=\dfrac{\dfrac{1}{16}}{x^2}+\dfrac{\dfrac{1}{4}}{y^2}+\dfrac{1}{z^2}\ge\dfrac{\left(\dfrac{1}{4}+\dfrac{1}{2}+1\right)^2}{x^2+y^2+z^2}=\dfrac{7}{4}\)

\(M_{min}=\dfrac{7}{4}\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{\sqrt{2}};1\right)\)

12 tháng 12 2020

 Nguyễn Việt Lâm anh oiiiiiiiiiii

8 tháng 4 2017

Từ giả thiết ta có:

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+2\left(x+y\right).\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+10=-y^2\le10\)

Mà \(\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\le0\)

\(\Rightarrow\left(x+y+\frac{7}{2}\right)^2\le\frac{9}{4}\)

Giải ra ta được \(x+y+1\ge-4\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)

Vậy \(A_{MIN}=-4\) tại \(\orbr{\begin{cases}x=-5\\y=0\end{cases}}\)

8 tháng 4 2017

bạn giải cái bất phương trình sai rồi: Min phải bằng -1, đề kêu 2 số thực x;y dương nên ko có chuyện x= -5 đâu

NV
25 tháng 12 2020

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

4 tháng 1 2021

đúng mà

NV
6 tháng 4 2021

\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)

\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)

\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)

\(\Rightarrow P\ge\sqrt{4038}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)

6 tháng 4 2021

Ta có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

Lại có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)

\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)

Dấu = khi \(x=y=\dfrac{2019}{2}\)

Bạn vào link tham khảo :

https://hoidap247.com/cau-hoi/1226651

# Hok tốt !

22 tháng 8 2021

\(x+y=1\Rightarrow\hept{\begin{cases}1-x=y\\1-y=x\end{cases}}\)

thay vào A ta được : \(A=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}\)

\(\Rightarrow A=\frac{1}{\sqrt{y}}-\sqrt{y}+\frac{1}{\sqrt{x}}-\sqrt{x}\)

\(\Rightarrow A=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có : \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\)

áp dụng \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) ta có : \(\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(\sqrt{x}^2+\sqrt{y}^2\right)=2\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)

\(\Rightarrow A\ge\sqrt{8}-\sqrt{2}=\sqrt{2}\)

dấu = xảy ra khi a=y=1/2

4 tháng 3 2021

Điểm rơi: \(x=y=\frac{\sqrt{2}}{2}\)

Ta tách biểu thức được như sau: \(A=x+\frac{1}{x}+y+\frac{1}{y}=(x+\frac{1}{2x})+(y+\frac{1}{2y})+\frac{1}{2}(\frac{1}{2x}+\frac{1}{2y})\)

\(\geq 2\sqrt{x.\frac{1}{2x}}+2\sqrt{y.\frac{1}{2y}}+\frac{1}{2}.\frac{4}{x+y}=2\sqrt{2}+\frac{2}{x+y}\)

Áp dụng bất đẳng thức Bunhiacốpxki, ta lại có:

\((x+y)^2\leq 2(x^2+y^2)=2 \Rightarrow x+y\leq \sqrt{2}\)

\(\Rightarrow A\geq 3\sqrt{2}\)

Dấu bằng xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\)

27 tháng 10 2024

đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,