K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Ta có: \(\overline{ab}\text{⋮}17\)

\(\Rightarrow\left(10a+b\right)\text{⋮}17\)

\(\Rightarrow2\left(10a+b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b\right)​\text{⋮}17\)

Giả sử \(\left(3a+2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b\right)-\left(3a+2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b-3a-2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a-3a\right)+\left(2b-2b\right)\text{⋮}17\)

\(\Rightarrow17a\text{⋮}17\left(đú\text{ng}\right)\)

Vậy điều giả sử là đúng, nghĩa là \(\left(3a+2b\right)\text{⋮}17\) (đpcm)

 

13 tháng 1 2016

Ta có:  ab = 10a +b

Đặt 10a+ b là c , 3a +2b là d 

Xét biểu thức: 2c - d = 2(10a +b) - (3a + 2b)

                              = 20a + 2b -3a -2b

                              = 17a Chia hết cho 17 

                             = > 2(10a +b) - (3a + 2b) chia hết cho 17

mà 3a +2b chia hết cho 17 => 2(10a +b) chia hết cho 17

                               mà (2,17) = 1 => 10a + b chia hết cho 17

                                                 => ab chia hết cho 17

Vậy ab chia hết cho 17 khi và chỉ khi ( 3a  + 2b ) chia hết cho 17 

Nhớ tick đúng cho mình nhé

31 tháng 7 2016

 (10a+b) - (3a +2b) = 20a + 2b - 3a -2b

 = 17a 

Vì 17chia hết cho17=> 17a chia hết cho 17

 => 2.(10a+b)- (3a +2b) chia hết cho 17

 Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17

Mà (2,17) =1=> 10a+b chia hết cho 17

                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

Vậy số đó chia hết cho 17

k cho mk nha

ta đặt A=10a+b

B=3a+2b

có 2A-B=2(10a+b)-(3a+2b)

2A-B=(20a+2b)-(3a+2b)

2A-B=17a chia hết cho 17

vì A chia hết cho 17 nên 2A chia hết cho 17

mà 2A-B chia hết cho 17 nên B chia hết cho 17

chứng minh 1a+b chia hết cho 17 thì 3a+2b chia hết cho 17

 

xin lỗi dòng cuối mình viết là 10a+b chứ ko phải 1a+b

22 tháng 2 2015

Ta có : 2.(10a+b) - (3a +2b) = 20a + 2b - 3a -2b

                                         = 17a 

          Vì 17chia hết cho17=> 17a chia hết cho 17

                                       => 2.(10a+b)- (3a +2b) chia hết cho 17

  Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17

                     Mà (2,17) =1=> 10a+b chia hết cho 17

                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

2 tháng 12 2016

cho 3a + 2b chia het cho 17 chung minyh rang 10a + b chia het cho 17

31 tháng 12 2015

3a+2b chia hết cho 17

=>10(3a+2b) chia hết cho 17

=>30a+20b chia hết cho 17

=>30a+20b-17b chia hết cho 17

=>30a+3b chia hết cho 17

=>3(10a+b) chia hết cho 17

Vì (3;17)=1=>10a+b chia hết cho 17

=>đpcm

31 tháng 12 2015

chtt nhân nam mới tích ủng hộ lên 160 cái

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$3a+2b\vdots 17$
$\Rightarrow 3a+2b+17a\vdots 17$

$\Rightarrow 20a+2b\vdots 17$

$\Rightarrow 2(10a+b)\vdots 17$

$\Rightarrow 10a+b\vdots 17$ (do $(2,17)=1$)

Ta có đpcm.