cho x,y thuộc Z :
nếu 3x+2y \(\Lambda\) 17 thì 10x+y\(\Lambda\) 17 và ngược lại
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
3x + y chia hết cho 17
Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)
Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh.
Đặt \(A=6x+10y+z\), \(B=3x-2y+4z\)
Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)
\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)
\(\Rightarrow A+5B⋮21\)(1)
+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )
+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)
Vậy ta có điều phải chứng minh.
Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)
Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)
\(=24x+40y+4z-3x+2y-4z\)
\(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)
\(=21x+42y=21.\left(x+2y\right)⋮21\)
mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)
Điều ngược lại:
Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)
Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)
\(=15x-10y+20z+6x+10y+z\)
\(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)
\(=21x+21z=21.\left(x+z\right)⋮21\)
mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)
Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)
Ta có
3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
=> 10x + y chia hết cho 17
Vậy nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 ( ĐPCM )
ta có :
3x + 2y chia hết cho 17
suy ra 9( 3x + 2y) chia hết cho 17
suy ra 27x + 18y chia hết cho 17
suy ra ( 27x + 18y ) - 9 17x + 17y) chia hết cho 17 ( vì 17 chia hết cho 17 nên 17x + 17y chia hết cho 17)
suy ra 10x + y chia hết cho 17
vậy nếu 3x + 2y chia hết cho 17 thùi 10x + y chũng chia hết cho 17
ko hỉu câu hỏi . viết hẳn hoi mình mới à dc
đề thầy ra thế mà