K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Làm hộ mình nhanh nha haha

11 tháng 12 2016

\(A=3+3^2+3^3+.....+3^{96}\\ \Rightarrow A=\left(3+3^2+3^3+3^4+3^5+3^6\right)+....+\left(3^{91}+3^{92}+3^{93}+3^{94}+3^{95}+3^{96}\right)\\ \)

\(\Rightarrow A=1092+....+3^{90}.1092\\ \Rightarrow A=1092\left(1+...+3^{90}\right)⋮21\)

 

11 tháng 11 2021

A =3+32+33+...+3119

A=(3+32)+(33+34)+...(3118+3119)

A=3.(1+3)+33.(1+3)+...+3118.(1+3)

A=3.4+33.4+...+3118.4

A=4.(3+33+...+3118)\(⋮\)4

=>A\(⋮\)4

A=3+32+33+...+3119

A=(3+32+33)+...+(3117+3118+3119)

A=3.(1+3+9)+...+3117.(1+3+9)

A=3.13+...+3117.13

A=13.(3+...+3117)\(⋮\)13

vì   A\(⋮\)4

và  A\(⋮\)13

=>A\(⋮\)4.13

=>A\(⋮\)52

vậy A\(⋮\)4 và A\(⋮\)52

28 tháng 12 2022

loading...

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

5 tháng 8 2023

Sửa câu a

a)Ta có:

\(A=3+3^2+3^3+...+3^{99}\)

 \(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\) 

\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)

\(A=39+...+3^{96}.39\)

\(A=39.\left(1+...+3^{96}\right)\)

Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13

Vậy A \(⋮\) 13

_________

b)Ta có:

 \(B=5+5^2+5^3+...+5^{50}\)

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)

\(B=30+5^2.30+...+5^{48}.30\)

\(B=30.\left(1+5^2+...+5^{48}\right)\)

Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6

Vậy B \(⋮\) 6

5 tháng 8 2023

a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)

     =3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13

b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)

  =5x6+...+549x6=6(5+..+549)⋮6.

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

10 tháng 8 2023

b) \(A=3+3^2+3^3+...+3^{60}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(A=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)

\(A=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)

\(A=13\cdot\left(3+3^4+...+3^{58}\right)\)

Vậy A chia hết cho 13

10 tháng 8 2023

a) \(A=3+3^2+...+3^{60}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)

\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)

Nên A chia hết cho 4

23 tháng 10 2023

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

23 tháng 10 2023

câu b đâu bạn ?

 

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ \Rightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\\ \Rightarrow A=\left(1+3+3^2\right)\left(3+3^4+...+3^{97}\right)\\ \Rightarrow A=13\left(3+3^4+...+3^{97}\right)⋮13\)

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ 3A-A=3^{99}-1\\ A=\dfrac{3^{99}-1}{2}\)

24 tháng 11 2021

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\\ A=3\cdot4+3^3\cdot4+...+3^{89}\cdot4\\ A=4\left(3+3^3+...+3^{89}\right)⋮4\)

24 tháng 11 2021

cảm ơn bạn