K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

ai giai giup voi

20 tháng 6 2018

bạn để ý trong ngoăcj có +2b^2c^2 đó bạn

Vì +2b^2c^2 - 4b^2c^2 = -2b^2c^2

20 tháng 6 2018

\(B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)

Vì a,b,c là độ dài 3 cạnh tam giác nên:

b+c>a => a-(b+c) < 0 => a-b-c < 0

a+b+c > 0

a+c>b => a+c-b > 0 => a-b+c > 0

a+b>c => a+b-c > 0

Do đó (a-b-c)(a+b+c)(a-b+c)(a+b-c) < 0 hay B<0 (đpcm)

17 tháng 6 2016

undefined

17 tháng 6 2016

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

31 tháng 1 2018

Xét \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4-2a^2b^2+b^4\right)-2c^2\left(a^2-b^2\right)+c^4-4c^2b^2\)

=\(\left(a^2-b^2\right)^2-2\left(a^2-b^2\right)c^2+c^4-4c^2b^2=\left(a^2-b^2-c^2\right)^2-4c^2b^2\)

=\(\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

=\(\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)

Mà a,b,c là 3 cạnh tam giác => a-b-c<0 ;a+b+c>0;a-b+c>0;a+b-c>0 

=>\(...< 0\Rightarrow a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2c^2a^2\left(ĐPCM\right)\)

31 tháng 1 2018

ta có\(a^4+b^4+c^4< 2a^2b^2+2c^2a^2+2b^2c^2\)

<=> \(-a^4-b^4-c^4+2a^2b^2+2a^2c^2+2b^2c^2>0\)

<=>\(4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)>0\)

<=> \(4a^2c^2-\left(a^2-b^2+c^2\right)^2>0\)

<=>.......

<=>(a+b+c)(a+c-b)(a+b-c)(b-a+c)>0

luôn đúng vì a,b,c là 3 cạnh của 1 tam giác 

vậy bđt trên dc cm dễ dàng

1 tháng 2 2017

a on à :D 

24 tháng 1 2017

Giải

Ta có \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)

\(=4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)\)

\(=4a^2c^2-\left(a^2-b^2+c^2\right)^2\)

\(=\left(2ac+a^2-b^2+c^2\right)\left(2ac-a^2+b^2-c^2\right)\)

\(=\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a+b+c\right)\left(a+c-b\right)\left(b+a-c\right)\left(b-a+c\right)\)

Vì a, b, c là ba cạnh của một tam giác nên:

a + b + c > 0, a + c - b > 0, b + a - c > 0, b - a + c > 0

Vậy \(2a^2b^2+2b^2c^2 +2a^2c^2-a^4-b^4-c^4>0\)

Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)

Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)

Khi đó :

\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)

Ta có bất đẳng thức mới theo ẩn x,y,z : 

\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)

Ta chứng minh bất đẳng thức phụ sau : 

\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)

Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))

Áp dụng , ta được :

\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)

Vậy bất đẳng thức được chứng minh