K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x2-5x-1

2
17 tháng 9 2015

đề ?                            

17 tháng 9 2015

x.x-5.x-1=x . ( x - 5 ) -1 

`#3107`

`a)`

`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`

`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`

`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`

`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`

`= (12x + y - 2)(2 - y + 2 + y)`

`= (12x + y - 2)*4`

`= 48x + 4y - 8`

`b)`

\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)

`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`

`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`

`= - 51`

`c)`

\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)

`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`

`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`

`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`

`= 1`

`d)`

\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)

`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`

`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`

`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`

`= x^6 + 16x^4 - 24x^2 - 128`

a) Ta có: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+4\left(x^2-5x\right)+6\left(x^2-5x\right)+24=0\)

\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x+4\right)+6\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-2\right)-3\left(x-2\right)\right]\left[x\left(x-1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\\x=4\end{matrix}\right.\)

Vậy: S={1;2;3;4}

b) Ta có: \(\left(2x+1\right)^2-2x-1=2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)+\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-2\right)+\left(2x+1-2\right)=0\)

\(\Leftrightarrow\left(2x+1+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+2\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+2=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{1}{2}\right\}\)

c) Ta có: \(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-x^2+x-x^2+x-1\right)-6=0\)

\(\Leftrightarrow x\left(x^3-2x^2+2x-1\right)-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-x-6=0\)

\(\Leftrightarrow x^4-2x^3+2x^2-4x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+2x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+2x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)+3\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x+3\right)=0\)

mà \(x^2-x+3>0\forall x\)

nên (x-2)(x+1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy: S={2;-1}

d) Ta có: \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+2x\left(x^2+1\right)+x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1+2x\right)+x\left(x^2+1+2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

13 tháng 8 2023

a) \(\left(x^2+5x-6\right):\left(x-1\right)\)

\(=\left[x\left(x+6\right)-\left(x+6\right)\right]:\left(x-1\right)\)

\(=\left(x-1\right)\left(x+6\right):\left(x-1\right)\)

\(=x+6\)

b) \(\left(x^3-x^2-5x+21\right):\left(x^2-4x+7\right)\)

\(=\left(x+3\right)\left(x^2-4x+7\right):\left(x^2-4x+7\right)\)

\(=x+3\)

3 tháng 7 2021

\(a,25x^2-1=15\)\(< =>x^2=\dfrac{16}{25}< =>x=\pm\dfrac{4}{5}\)

\(b,\left(x-4\right)^2-\left(5x+2\right)^2=0\)\(< =>\left(-4x-6\right)\left(6x-2\right)=0\)

\(< =>\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(c,\left(x-1\right)\left(x-9\right)=0< =>\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

a) Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-1\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)

\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)

\(\Leftrightarrow24x=-10\)

hay \(x=-\dfrac{5}{12}\)

12 tháng 8 2021

a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)

\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b,\(< =>25x^2+10x+1-25x^2+9-30=0\)

\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)

c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)

\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)

\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)

\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)

a: Ta có: \(x^2-2x+1=25\)

\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)

b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)

\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow10x=20\)

hay x=2

c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)

\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)

\(\Leftrightarrow x^3-1-x^3+4x=5\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)

27 tháng 4 2023

\(a,\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\\ \Leftrightarrow4x^2+x-12x-3-\left(4x^2-28x-x+7\right)-15=0\\ \Leftrightarrow4x^2-11x-3-4x^2+29x-7-15=0\\ \Leftrightarrow18x=25\\ \Leftrightarrow x=\dfrac{25}{18}\)

Vậy \(x=\dfrac{25}{18}\)

\(b,\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-3\right)=4\\ \Leftrightarrow x^3+1-x^3+3x-4=0\\ \Leftrightarrow3x-3=0\\ \Leftrightarrow x=1\)

Vậy \(x=1\)

\(c,\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)-6x=0\\ \Leftrightarrow x^3-27+5x-x^3-6x=0\\ \Leftrightarrow-x-27=0\\ \Leftrightarrow x=-27\)

Vậy \(x=-27\)

\(d,\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\\ \Leftrightarrow25x^2-1-25x^2+7x-15=0\\ \Leftrightarrow7x-16=0\\ \Leftrightarrow x=\dfrac{16}{7}\)

Vậy \(x=\dfrac{16}{7}\)

8 tháng 12 2023

Phân tích đa thức thành nhân tử

1: \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

2: \(x^2-y^2+x-y\)

\(=\left(x^2-y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+1\right)\)

3: \(3x-3y+x^2-y^2\)

\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4: \(5x-5y+x^2-y^2\)

\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(5+x+y\right)\)

5: \(x^2-5x-y^2-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

6: \(x^2-y^2+2x-2y\)

\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+2\right)\)

7: \(x^2-4y^2+x+2y\)

\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+1\right)\)

8: \(x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

9: \(x^2-4y^2+2x+4y\)

\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+2\right)\)

19 tháng 10 2019

A = 5x(4 x 2 – 2x + 1) – 2x(10 x 2 – 5x – 2) – 9x + 1

ó A = 5x.4 x 2 – 5x.2x + 5x.1 – 2x.10 x 2 – 2x.(-5x) – 2x(-2) – 9x + 1

ó A = 20 x 3   –   10 x 2   +   5 x   –   20 x 3   +   10 x 2 + 4x – 9x + 1

ó A = 9x – 9x + 1

ó A = 1

Vậy giá trị của biểu thức A không phụ thuộc vào biến x

Đáp án cần chọn là: D