K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2015

x3-2x2+5x-4=0

<=>x3-2x2+x+4x-4=0

<=>x.(x2-2x+1)+4.(x-1)=0

<=>x.(x-1)2+4.(x-1)=0

<=>(x-1)[x.(x-1)+4]=0

<=>(x-1)(x2-x+4)=0

Vì x2-x+4=(x-1/2)2+15/4 >0 với mọi x nên

x-1=0

<=>x=1

22 tháng 7 2018

         \(x^2-5x-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

Vậy....

\(2x\left(x+6\right)=7x+42\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)

Vậy......

\(x^3-5x^2+x-5=0\)

\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy...

6 tháng 3 2020

a) 6x2 - 5x + 3 = 2x - 3x(2 - x)

<=> 6x2 - 5x + 3 = 2x - 6x + 3x2

<=> 6x2 - 5x + 3 = -4x + 3x2

<=> 6x2 - 5x + 3 + 4x - 3x2 = 0

<=> 3x2 - x + 3 = 0

=> Pt vô nghiệm

b) 25x2 - 9 = (5x + 3)(2x + 1)

<=> 25x2 - 9 = 10x2 + 5x + 6x + 3

<=> 25x2 - 9 = 10x2 + 11x + 3

<=> 25x2 - 9 - 10x2 - 11x - 3 = 0

<=> 15x2 - 12 - 11x = 0

<=> 15x2 + 9x - 20x - 12 = 0

<=> 3x(5x + 3) - 4(5x + 3) = 0

<=> (5x + 3)(3x - 4) = 0

<=> 5x + 3 = 0 hoặc 3x - 4 = 0

<=> x = -3/5 hoặc x = 4/3

6 tháng 4 2018

\(a)\) \(\left(x-1\right)\left(2x-3\right)>0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-4>0\\2x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>4\\2x>3\end{cases}\Leftrightarrow}\hept{\begin{cases}x>4\\x>\frac{3}{2}\end{cases}}}\)

\(\Rightarrow\)\(x>4\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-4< 0\\2x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 4\\2x< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 4\\x< \frac{3}{2}\end{cases}}}\)

\(\Rightarrow\)\(x< \frac{3}{2}\)

Vậy \(x>4\) hoặc \(x< \frac{3}{2}\)

Chúc bạn học tốt ~ 

6 tháng 4 2018

\(b)\) \(\left(x-1\right)\left(2x+5\right)< 0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-1< 0\\2x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\2x>-5\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 1\\x>\frac{-5}{2}\end{cases}}}\)

\(\Rightarrow\)\(\frac{-5}{2}< x< 1\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-1>0\\2x+5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\2x< -5\end{cases}\Leftrightarrow}\hept{\begin{cases}x>1\\x< \frac{-5}{2}\end{cases}}}\) ( loại ) 

Vậy \(\frac{-5}{2}< x< 1\)

Chúc bạn học tốt ~ 

3 tháng 7 2019

1) 2x(x + 1) - x2(x + 2) + x3 - x + 4 = 0

<=> 2x.x + 2x.1 + (-x2).x + (-x2).2 + x3 - x + 4 = 0

<=> 2x2 + 2x - x3 - 2x2 + x3 - x = 0 - 4

<=> x = -4

=> x = -4

2) xem lại đề rồi chúng mình nói chuyện cậu nha :))

3) tương tự (mình hơi lười, thông cảm :v)

3, [(3x - 5)(7 - 5x)] - [(5x + 2)(2 - 3x)] = 4

<=> ( 21x -15x^2 -35 +25x) - (10x -15x^2 + 4-6x)=4
<=> 21x -15x^2 -35 +25x- 10x + 15x^2 - 4+6x =4
<=> 42x - 39 =4
<=> 42x = 43
<=< x =43/42

2, (3x - 2)(4x - 5 ) - (2x - 1)(6x + 2) = 0

12x2- 15x - 8x + 10 - 12x2 - 4x + 6x + 2 = 0

- 21x = -12

x = 4/7

1, đã có người giải

11 tháng 4 2020

1)

\(5x^2-\sqrt{3}x-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{23}-\sqrt{3}}{10}\\x=\frac{\sqrt{23}+\sqrt{3}}{10}\end{cases}}\)

25 tháng 2 2019

\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\) (ĐKXĐ: \(x\in R,x\le2\))

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x^2+6x+7\right)}+\sqrt{\left(2-x\right)\left(5x^2+10x+14\right)}-\left(4-2x-x^2\right)\sqrt{2-x}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}-4+2x+x^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\left(1\right)\end{cases}}\)

Pt \(\left(1\right)\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(2\right)\)

Ta có: \(\left(x+1\right)^2\ge0\Rightarrow\sqrt{2\left(x+1\right)^2+4}\ge\sqrt{4}=2\)

Tương tự: \(\sqrt{5\left(x+1\right)^2+9}\ge3\). Từ đó: \(VT_{\left(2\right)}\)\(\ge2+3=5\)

Mà \(VP_{\left(2\right)}=-\left(x+1\right)^2+5\le5\) nên dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)(tm)

Vậy tập nghiệm của pt cho là \(S=\left\{2;-1\right\}.\)

3 tháng 7 2019

a) \(\frac{1}{3}+\frac{2}{3}:x=-7\)

=> \(\frac{2}{3}:x=-7-\frac{1}{3}\)

=> \(\frac{2}{3}:x=-\frac{22}{3}\)

=> \(x=\frac{2}{3}:\left(-\frac{22}{3}\right)\)

=> \(x=-\frac{1}{11}\)

b) \(\frac{1}{3}x+\frac{2}{5}x=0\)

=> \(\frac{11}{15}x=0\)

=> \(x=0\)

c) \(\left(2x-3\right)\left(6-2x\right)=0\)

=> \(\left(2x-3\right)\left(3-x\right).2=0\)

=> \(\left(2x-3\right)\left(3-x\right)=0\)

=> \(\orbr{\begin{cases}2x-3=0\\3-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)

a) \(\frac{1}{3}+\frac{2}{3}:x=-7\)

\(\Rightarrow\frac{2}{3}.\frac{1}{x}=-7-\frac{1}{3}\)

\(\Rightarrow\frac{2}{3x}=\frac{-21-1}{3}\)

\(\Rightarrow\frac{2}{3x}=\frac{-22}{3}\)

\(\Rightarrow-22.3x=6\)

\(\Rightarrow3x=\frac{-6}{22}=\frac{-3}{11}\)

\(\Rightarrow x=\frac{-3}{11}:3=\frac{-3}{11}.\frac{1}{3}\)

\(\Rightarrow x=\frac{-1}{11}\)

b) \(\frac{1}{3}x+\frac{2}{5}x=0\)

\(\Rightarrow x.\left(\frac{1}{3}+\frac{2}{5}\right)=0\)

\(\Rightarrow x=0\)

c) \(\left(2x-3\right).\left(6-2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\6-2x=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=3\\2x=6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)

d) \(x:\frac{3}{4}+\frac{1}{4}=\frac{-2}{3}\)

\(\Rightarrow x.\frac{4}{3}=\frac{-2}{3}-\frac{1}{4}\)

\(\Rightarrow x.\frac{4}{3}=\frac{-11}{12}\)

\(\Rightarrow x=\frac{-11}{12}:\frac{4}{3}=\frac{-11}{12}.\frac{3}{4}=\frac{-11}{16}\)

e) \(\frac{3}{4}-\left|x-\frac{2}{3}\right|=\frac{1}{2}\)

\(\Rightarrow\left|x-\frac{2}{3}\right|=\frac{3}{4}-\frac{1}{2}\)

\(\Rightarrow\left|x-\frac{2}{3}\right|=\frac{1}{4}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{1}{4}\\x-\frac{2}{3}=\frac{-1}{4}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{11}{12}\\x=\frac{5}{12}\end{cases}}\)

13 tháng 10 2018

a) 5x.(x+3/4) = 0

=> x = 0

x+3/4 = 0 => x = -3/4

b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)

\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)

\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)

\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)

\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)

\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

=> x + 2017 = 0

x = -2017

13 tháng 10 2018

a) để 2x - 3 > 0

=> 2x > 3

x > 3/2

b) 13-5x < 0

=> 5x < 13

x < 13/5

c) \(\frac{x+3}{2x-1}>0\)

=> x + 3 > 0

x > -3

d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)

Để x+7/x+3 < 1

=> 1 + 4/x+3 < 1

=> 4/x+3 < 0

=> không tìm được x thỏa mãn điều kiện