giúp e câu b vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: ĐKXĐ: x<>-3
\(\dfrac{3x+x^2}{x^2+x+1}\cdot\dfrac{3x^3-3}{x+3}\)
\(=\dfrac{x\left(x+3\right)}{x^2+x+1}\cdot\dfrac{3\left(x^3-1\right)}{x+3}\)
\(=\dfrac{3x\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=3x\left(x-1\right)\)
e: ĐKXĐ: \(x\notin\left\{4;-5\right\}\)
\(\dfrac{2x+10}{x^3-64}:\dfrac{\left(x+5\right)^2}{2x-8}\)
\(=\dfrac{2\left(x+5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}\cdot\dfrac{2x-8}{\left(x+5\right)^2}\)
\(=\dfrac{2\cdot2\left(x-4\right)}{\left(x-4\right)\left(x^2+4x+16\right)}=\dfrac{4}{x^2+4x+16}\)
a) \(A=\left(2\sqrt{12}-\sqrt{75}+\dfrac{1}{2}\sqrt{48}\right):\sqrt{3}\)
\(A=\left(4\sqrt{3}-5\sqrt{3}+2\sqrt{3}\right):\sqrt{3}\)
\(A=\sqrt{3}:\sqrt{3}\)
\(A=1\)
b) \(B=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(B=\left|2-\sqrt{5}\right|-\left|\sqrt{5}+1\right|\)
\(B=-2+\sqrt{5}-\sqrt{5}-1\)
\(B=-3\)
c) \(C=\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{3+\sqrt{7}}\)
\(C=\dfrac{3\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\dfrac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(C=\dfrac{3\left(\sqrt{7}+2\right)}{3}-\dfrac{4\left(3-\sqrt{7}\right)}{2}\)
\(C=\sqrt{7}+2-2\left(3-\sqrt{7}\right)\)
\(C=\sqrt{7}+2-6+2\sqrt{7}\)
\(C=3\sqrt{7}-4\)
d) \(D=3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\)
\(D=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-\dfrac{1}{4}\cdot8\sqrt{2a}\)
\(D=5\sqrt{2a}-3a\sqrt{2a}-2\sqrt{2a}\)
\(D=3\sqrt{2a}-3a\sqrt{2a}\)
e) \(E=\dfrac{3+\sqrt{3}}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
\(E=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(E=\left(\sqrt{3}+1\right)-\dfrac{2\left(\sqrt{3}+1\right)}{2}\)
\(E=\left(\sqrt{3}+1\right)-\left(\sqrt{3}+1\right)\)
\(E=0\)
Lời giải:
a.
\(A=2\sqrt{\frac{12}{3}}-\sqrt{\frac{75}{3}}+\frac{1}{2}\sqrt{\frac{48}{3}}=2\sqrt{4}-\sqrt{25}+\frac{1}{2}\sqrt{16}\)
\(2.2-5+\frac{1}{2}.4=1\)
b.
\(B=|2-\sqrt{5}|-|\sqrt{5}+1|=\sqrt{5}-2-(\sqrt{5}+1)=-3\)
c.
\(C=\frac{3(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}-\frac{4(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}\)
\(=\frac{3(\sqrt{7}+2)}{7-2^2}-\frac{4(3-\sqrt{7})}{3^2-7}\)
\(=\frac{3(\sqrt{7}+2)}{3}-\frac{4(3-\sqrt{7})}{2}=\sqrt{7}+2-2(3-\sqrt{7})=-4+3\sqrt{7}\)
e.
\(E=\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}}-\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\sqrt{3}+1-\frac{2(\sqrt{3}+1)}{3-1^2}=(\sqrt{3}+1)-(\sqrt{3}+1)=0\)
`@` `\text {Ans}`
`\downarrow`
`b,`
\(B=x^6 - 20x^5 - 20x^4 - 20x^3 - 20x^2 - 20x + 3\) tại `x=21`
Ta có: `20 = 21 - 1 => 20 = x-1`
Thay `20 = x-1` vào, ta có:
\(x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
`=`\(x^6-x^6+x^5-x^5+x^4-x^4+...+x+3\)
`=`\(x+3\)
`=`\(21+3=24\)
Vậy, `B=24`
`c,`
`C=`\(x^7-26x^6+27x^5-47x^4-77x^3+50x^2+x-24\) tại `x=25`
`=`\(x^7-25x^6-x^6+25x^5+2x^5-50x^4+3x^4-75x^3-2x^3+50x^2+x-24\)
`=`\(x^6\left(x-25\right)-x^5\left(x-25\right)+2x^4\left(x-25\right)+3x^3\left(x-25\right)-2x^2\left(x-25\right)+x-24\)
`=`\(\left(x^6-x^5+2x^4+3x^3-2x^2\right)\left(x-25\right)+x-24\)
Thay `x=25` vào bt C, ta được:
\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\left(25-25\right)+25-24\)
`=`\(\left(25^6-25^5+2\cdot25^4+3\cdot25^3-2\cdot25^2\right)\cdot0+1\)
`= 0+1=1`
Vậy, `C=1.`
\(a,2x^3-6x^2-2x\left(x^2-3x+2\right)\)
\(=2x^3-6x^2-2x^3+6x^2-4x\)
\(=\left(2x^3-2x^3\right)+\left(-6x^2+6x^2\right)-4x\)
\(=0+0-4x\)
\(=-4x\)
\(b,-6x^2\left(3x-1\right)+2x\left(9x^2+5x\right)\)
\(=-18x^3+6x^2+18x^3+10x^2\)
\(=\left(-18x^3+18x^3\right)+\left(6x^2+10x^2\right)\)
\(=0+16x^2\)
\(=16x^2\)
a. \(2x^3-6x^2-2x\left(x^2-3x+2\right)\\ =2x^3-6x^2-2x^3+6x^2-4x\\ =-4x\)
b. \(-6x^2\left(3x-1\right)+2x\left(9x^2+5x\right)\\ =-18x^3+6x^2+18x^3+10x^2\\ =6x^2+10x^2\\ =16x^2\)
\(b,\left(1\right)4Al+3O_2\underrightarrow{^{to}}2Al_2O_3\\ \left(2\right)Al_2O_3+3H_2SO_4\rightarrow Al_2\left(SO_4\right)_3+3H_2O\\ \left(3\right)Al_2\left(SO_4\right)_3+3BaCl_2\rightarrow3BaSO_4\downarrow+2AlCl_3\\ \left(4\right)AlCl_3+3AgNO_3\rightarrow Al\left(NO_3\right)_3+3AgCl\downarrow\\ \left(5\right)Al\left(NO_3\right)_3+3KOH\rightarrow Al\left(OH\right)_3\downarrow+3KNO_3\\ \left(6\right)2Al\left(OH\right)_3\underrightarrow{^{to}}Al_2O_3+3H_2O\)
\(d,\left(1\right)3Fe+2O_2\underrightarrow{^{to}}Fe_3O_4\\ \left(2\right)Fe_3O_4+4CO\underrightarrow{^{to}}3Fe+4CO_2\\ \left(3\right)FeO+H_2\underrightarrow{^{to}}Fe+H_2O\\ \left(4\right)Fe+4HNO_3\rightarrow Fe\left(NO_3\right)_3+NO+2H_2O\\ \left(5\right)2Fe\left(NO_3\right)_3+Fe\rightarrow3Fe\left(NO_3\right)_2\\ \left(6\right)Fe\left(NO_3\right)_2+2KOH\rightarrow Fe\left(OH\right)_2\downarrow+2KNO_3\\ \left(7\right)4Fe\left(OH\right)_2+O_2+2H_2O\rightarrow4Fe\left(OH\right)_3\)
\(a,\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\\ \Leftrightarrow48x^2-20x-12x+5-3x-48x^2-7+112x-81=0\\ \Leftrightarrow77x=83\\ \Leftrightarrow x=\dfrac{83}{77}\)
\(b,\left(x-4\right)\left(x-1\right)=\left(x-2\right)\left(x-3\right)\\ \Leftrightarrow x^2-4x-x+4=x^2-2x-3x+6\\ \Leftrightarrow x^2-x^2-4x-x+2x+3x=6-4\\ \Leftrightarrow0x=2\left(vô.lí\right)\)
Vậy không có x thoả mãn
Về câu 3 mình cảm thấy bạn trả lời ổn rồi.
Câu 4:
Chủ đề của bài thơ: tình cảm gia đình ( cụ thể với người mẹ ).
Câu 5:
Qua đoạn thơ trên em cảm nhận được tình yêu thương sâu sâu sắc và nỗi nhớ của tác giả đối với người mẹ của mình. Hồi tưởng về quá khứ, hình ảnh tác giả nhớ nhất chính là người mẹ. Nét cười đen nhánh, hình dáng của mẹ chưa xóa mờ trong kí ức. Tất cả đều chứa chan nỗi nhớ về hình ảnh mẹ thuở xưa kia. Qua đó,ta thấy được giá trị đạo đức cao đẹp của người Việt Nam, đó là tình cảm gia đình thiêng liêng, sâu sắc.
7sin2a+5cos2a=13/2
2sin2a+(5sin2a+5cos2a)=13/2
2sin2a+5=13/2(do sin2a+cos2a=1, công thức này bạn có thể xem chứng minh trên youtube nha, cái này ai cũng phải biết)
2sin2a=3/2
sin2a=3/4
sin(a)=\(\frac{\sqrt{3}}{2}\)
suy ra a=600