K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 12 2016

Giải như sau: Cho biểu thức cần tính là $A$

Đặt \(\begin{cases}u=x\\dv=\frac{\cos x}{\sin^3x}dx\end{cases}\) \(\Rightarrow\) \(\begin{cases}du=dx\\v=\int\frac{\cos xdx}{\sin^3x}=\int\end{cases}\frac{d\left(\sin x\right)}{\sin^3x}=\frac{-1}{2\sin^2x}}\)

Áp dụng quy tắc nguyên hàm từng phần:

\(A=-\frac{x}{2\sin^2x}+\int\frac{1}{2\sin^2x}dx=\frac{-x}{2\sin^2x}-\frac{1}{2}\int d\left(\cot x\right)=\frac{-x}{2\sin^2x}-\frac{\cot x}{2}\)

 

AH
Akai Haruma
Giáo viên
15 tháng 12 2016

Viết lại chỗ công thức lỗi hiuhiu:

Suy ra \(d\left(u\right)=dx\)\(v=\int\frac{\cos xdx}{\sin^3x}=\int\frac{d\left(\sin x\right)}{\sin^3x}=-\frac{1}{2\sin^2x}\)

24 tháng 1 2017

23 tháng 1 2016

a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)

          = \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)

Do đó : 

\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)

23 tháng 1 2016

b) Ta biến đổi :

\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)

\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)

Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)

13 tháng 9 2019

Chọn D

8 tháng 9 2017

Chọn D

17 tháng 8 2023

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

23 tháng 2 2017

Đáp án là C.