Tính nguyên hàm x.cosx.dx/sin^3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau: Cho biểu thức cần tính là $A$
Đặt \(\begin{cases}u=x\\dv=\frac{\cos x}{\sin^3x}dx\end{cases}\) \(\Rightarrow\) \(\begin{cases}du=dx\\v=\int\frac{\cos xdx}{\sin^3x}=\int\end{cases}\frac{d\left(\sin x\right)}{\sin^3x}=\frac{-1}{2\sin^2x}}\)
Áp dụng quy tắc nguyên hàm từng phần:
\(A=-\frac{x}{2\sin^2x}+\int\frac{1}{2\sin^2x}dx=\frac{-x}{2\sin^2x}-\frac{1}{2}\int d\left(\cot x\right)=\frac{-x}{2\sin^2x}-\frac{\cot x}{2}\)
Viết lại chỗ công thức lỗi hiuhiu:
Suy ra \(d\left(u\right)=dx\) và \(v=\int\frac{\cos xdx}{\sin^3x}=\int\frac{d\left(\sin x\right)}{\sin^3x}=-\frac{1}{2\sin^2x}\)
a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)
= \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)
Do đó :
\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)
b) Ta biến đổi :
\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)
\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)
Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)
tham khảo:
a)\(y'=xsin2x+sin^2x\)
\(y'=sin^2x+xsin2x\)
b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)
c)\(y=sin3x-3sinx\)
\(y'=3cos3x-3cosx\)
d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)
\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)