K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

giải :

vì p, p+2014k,p+2015k là SNT > 3 . => p, p+2014k, p+2015k là số lẻ 2015k là số lẻ k là số chẵn => k chia hết cho 2 Lại có p chia 3 dư 1 => p có dạng 3m + 1 Mà p+ 2014k là SNT => p+ 2014k ko chia hết cho 3 => 3m + 1 +2014k ko chia hết cho 3 Mà 3m chia hết cho 3 , 1 ko chia hết cho 3 => 2014k chia hết cho 3 => k chia hết cho 3( vì 2014 ko chia hết cho 3) k chia hết cho 3 ; 2 => k chia hết cho 6

23 tháng 1 2019

tự giải à

16 tháng 5 2018

Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.

• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)

• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:

   + Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3

   + Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3

   + Nếu a và a + 2k có cùng số dư, thì suy ra:

( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3

Vậy, ta luôn có k chia hết cho 3 (2)

Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.

Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:

• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.

• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.

24 tháng 3

Bạn cao minh tâm ghi là "2k 3" và "k 3" có nghĩa là gì