K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2022

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC 

mà OB=OC

nên OA là trung trực của BC

Xét tứ giác OBAC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét ΔAEC và ΔACD có

gó ACE=góc ADC

góc EAC chung

Do đo: ΔAEC đồng dạng với ΔACD

=>AE/AC=AC/AD

=>AC^2=AE*AD

15 tháng 12 2022

 

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC 

mà OB=OC

nên OA là trung trực của BC

Xét tứ giác OBAC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét ΔAEC và ΔACD có

gó ACE=góc ADC

góc EAC chung

Do đo: ΔAEC đồng dạng với ΔACD

=>AE/AC=AC/AD

=>AC^2=AE*AD

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng nằm trên 1 đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔABD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\)(3)

=>\(AE\cdot AD=AC^2\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

góc EAH chung

Do đó: ΔAEH đồng dạng với ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

c: Ta có: ΔOED cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)ED tại K

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

Xét ΔOKA vuông tại K và ΔOHF vuông tại H có

\(\widehat{KOA}\) chung

Do đó: ΔOKA đồng dạng với ΔOHF

=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)

=>\(OK\cdot OF=OA\cdot OH\)

=>\(OK\cdot OF=R^2=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

Xét ΔOKD và ΔODF có

\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

góc KOD chung

Do đó: ΔOKD đồng dạng với ΔODF

=>\(\widehat{OKD}=\widehat{ODF}\)

=>\(\widehat{ODF}=90^0\)

=>FD là tiếp tuyến của (O)

30 tháng 12 2021

undefinedundefinedundefinedundefined

30 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a: ΔODE cân tại O

mà OK là trung tuyến

nên OK vuông góc DE

góc OKA=góc OBA=góc OCA=90 độ

=>O,K,C,A,B cùng thuộc 1 đường tròn

b: Xét ΔACE và ΔADC có

góc ACE=góc ADC

góc CAE chung

=>ΔACE đồng dạng với ΔADC

=>AC/AD=AE/AC

=>AC^2=AD*AE

c: Xét ΔOKA vuông tại K và ΔOHF vuông tại H có

góc O chung

=>ΔOKA đồng dạng với ΔOHF

=>OK/OH=OA/OF

=>OK*OF=OH*OA=OE^2=OD^2

=>FD là tiếp tuyến của (O)

28 tháng 12 2016

Dễ thấy: A,B,O,K,CA,B,O,K,C nằm trên đường tròn đường kính OAOA .

Ta có: AE.AD=AB2=AH.AO⇒E,D,H,OAE.AD=AB2=AH.AO⇒E,D,H,O cùng thuộc 1 đường tròn
Mặt khác: A,E,B,HA,E,B,H cùng thuộc đường tròn đường kính ABAB nên ˆEHF=ˆBAD=ˆEBD=ˆEOFEHF^=BAD^=EBD^=EOF^
Suy ra: E,H,O,FE,H,O,F đồng viên. Suy ra: E,H,O,F,DE,H,O,F,D cùng thuộc đường tròn đường kính OFOF.
Gọi JJ là giao điểm của ININ và ADAD.
Xét 2 tam giác: ΔIHJΔIHJ và ΔFHDΔFHD
Ta có: ˆJIH=ˆAIJJIH^=AIJ^ (t/c đối xứng) =ˆABC=ˆDFH=ABC^=DFH^
Mặt khác:ˆIHJ=ˆIAJIHJ^=IAJ^(t/c đối xứng) =ˆEOF=ˆDHF=EOF^=DHF^
Suy ra:ΔIHJΔIHJ và ΔFHDΔFHD đồng dạng nên JHHD=IHFHJHHD=IHFH
Mà IBFNIBFN là hình bình hành nên NF=IB=IHNF=IB=IH hay JHHD=NFFHJHHD=NFFH
Mà ˆJHD=ˆNFHJHD^=NFH^ (dùng cộng góc, góc nội tiếp,...)
nên ΔJHDΔJHD và ΔNFHΔNFH đồng dạng nên JHDNJHDN nội tiếp 
Ta suy ra:ˆNHD=ˆNJD=ˆHDFNHD^=NJD^=HDF^ nên suy ra: NH=NDNH=ND
Mà NH=NANH=NA (t/c đối xứng) nên NA=NDNA=ND(đ.p.c.m)