Cho 0 < x < 90o và sin x = 3cos x. Tính sin x, cos x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\frac{\pi}{2}< x< \pi\\ \Rightarrow cosx< 0,sinx>0,cotx< 0\)
\(cotx=\frac{1}{tanx}=\frac{-1}{3}\)
\(1+tan^2x=\frac{1}{cos^2x}\\ \Rightarrow cosx=\sqrt{\frac{1}{1+tan^2}}=\sqrt{\frac{1}{1+9}}=-\frac{\sqrt{10}}{10}\)
\(sinx=\sqrt{1-cos^2x}=\sqrt{1-\frac{10}{100}}=\frac{3\sqrt{10}}{10}\)
a) Ta có: \(\sin^2a^o=\cos^2\left(90^o-a^o\right)\)
Biểu thức trên
\(=\left(\sin^21^o+\sin^o89\right)+\left(\sin^22^o+\sin^288^o\right)+...+\left(\sin^244^o+\sin^246^o\right)+\sin^245^o\)
\(=\left(\sin^21^o+\cos^21^o\right)+\left(\sin^22^o+\cos^22^o\right)+...+\left(\sin^244^o+\cos^246^o\right)+\sin^245^o\)
\(=1+1+..+1+\sin^245^o=44+\frac{1}{2}=\frac{89}{2}\)
b)
Ta có: \(\sin^2x+\cos^2x=1\)
\(0^o< x< 90^o\)
=> \(0< \sin x;\cos x< 1\)
Ta có: \(\frac{\sin^2x+\cos^2x}{\text{}\text{}\sin x.\cos x}=\frac{1}{\frac{12}{25}}=\frac{25}{12}\Leftrightarrow\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{25}{12}\)
\(\Leftrightarrow\tan x+\frac{1}{\tan x}=\frac{25}{12}\Leftrightarrow\tan^2x-\frac{25}{12}\tan x+1=0\)
Đặt t =tan x => có phương trình bậc 2 ẩn t => Giải đen ta => ra đc t => ra đc tan t
\(\Leftrightarrow\orbr{\begin{cases}\tan x=\frac{3}{4}\\\tan x=\frac{4}{3}\end{cases}}\)
\(VT=\dfrac{sin^2x+\left(1+cosx\right)^2}{sinx\left(1+cosx\right)}\)
\(=\dfrac{sin^2x+1+cos^2x+2cosx}{sinx\left(1+cosx\right)}\)
\(=\dfrac{2\left(cosx+1\right)}{sinx\left(cosx+1\right)}=\dfrac{2}{sinx}\)
tam thoi cho ban dung
<=>(sinx+cosx-1)/(1-cosx+sinx+cosx-1)=(2cosx)/(sinx-cosx+1+2cosx)
<=>(sinx+cosx-1)/sinx=2cosx/(sinx+cosx+1)
x€(0;π/2)=> sinx ≠0; sinx+cosx+1≠0
<=>(sinx+cosx-1)(sinx+cosx+1)=2sinxcosx
<=>(sinx+cosx)^2-1=2sinxcosx
<=>(sin^2x+cos^2+2sinxcos)-1=2sinxcosx
<=>1+2sinxcosx-1=2sinxcosx
<=>2sinxcosx=2sinxcosx
moi bd <=>=> ban dung =>dpcm
ta có : \(0^o< x< 90^o\) \(\Rightarrow sinx-cosx+1>0\) và ta luôn có \(1-cosx>0\) \(\Rightarrow\) biểu thức trên được xác định
\(\Rightarrow\dfrac{sinx+cos-1}{1-cosx}=\dfrac{2cosx}{sinx-cos+1}\)
\(\Leftrightarrow\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow\left(sinx+\left(cosx-1\right)\right)\left(sinx-\left(cosx-1\right)\right)=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-sin^2x-cos^2x=2cosx-2cos^2x\)\(\Rightarrow2cosx-2cos^2x=2cosx-cos^2x\) \(\Rightarrow\left(đpcm\right)\)
\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2cosx}{sinx-cosx+1}\)
\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx\left(1-cosx\right)\)
\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)
\(\Leftrightarrow sin^2x+cos^2x-1=0\)
\(\Leftrightarrow1-1=0\) đúng
ta có : \(sin^6x+cos^6x-2sin^4x-cos^4x+sin^2x\)
\(=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-2sin^4x-cos^4x+sin^2x\)
\(=1-3sin^2x.cos^2x-2sin^4x-cos^4x+sin^2x\)
\(=1-2sin^2x.cos^2x-2sin^4x-sin^2x.cos^2x+sin^2x-cos^4 x\)
\(=1-2sin^2x\left(cos^2x+sin^2x\right)-sin^2x\left(cos^2x-1\right)-cos^4x\)
\(=1-2sin^2x+sin^4x-cos^4x=1-2sin^2x+\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)
\(=1-2sin^2x+sin^2x-cos^2x=1-sin^2x-cos^2x\)
\(=1-1=0\) (không phụ thuộc vào biến \(x\)) (đpcm)
\(A=s\left(x\right)cs\left(x\right)+\frac{\left(s^3\left(x\right)+cs^3\left(x\right)\right)}{cs\left(x\right)\left(1+t\left(x\right)\right)}=s\left(x\right)cs\left(x\right)+\left(\frac{\left(s\left(x\right)+cs\left(x\right)\right)\left(1-s\left(x\right)cs\left(x\right)\right)}{\left(s\left(x\right)+cs\left(x\right)\right)}\right)\)
\(=1\) vì \(s\left(x\right)+cs\left(x\right)\ne0,\forall0< =x< =\frac{\pi}{2}\)
điều kiện xác định \(cotx;sinx\ne0\)
ta có : \(\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{sinx.cosx}{cotx}=\dfrac{cot^2x-cos^2x}{cot^2x}+\dfrac{cos^2x}{cot^2x}\)
\(=\dfrac{cot^2x-cos^2x+cos^2x}{cot^2x}=\dfrac{cot^2x}{cot^2x}=1\) (không phụ thuộc vào \(x\)) (đpcm)
Thôi vậy
TA có
sin^2 x + cos^2 x = 1
Thay sin x = 3 cos x ta có :
9 cos ^2 x + cos ^2 x = 1
=> 10 cos ^2 x = 1
=> cos ^2 x = 1/10
=> cos x = 1/ căn (10)
=> sin x = 3/ căn (10)