K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2014 đồng dư với -1(mod 2015)

=>20142015 đồng dư với (-1)2015=-1(mod 2015)

2016 đồng dư với 1(mod 2015)

=>20162013 đồng dư với 1(mod 2015)

=>20142015+20162013 đồng dư với -1+1=0(mod 2015)

=>20142015+20162013 chia hết cho 2015

=>đpcm 

16 tháng 9 2015

\(2014^{2015}+2016^{2013}=\left(2015-1\right)^{2015}+\left(2015+1\right)^{2013}=2015^{2015}+2015^{2013}=2015.\left(2015^{2014}+2015^{2012}\right)\)

chia hết cho 2015 

5 tháng 2 2016

⇒ T = ( 2015 + 20152 ) + ( 20153 + 20154 ) + .... + ( 20152015 + 20152016 )

⇒ T = 2015.( 1 + 2015 ) + 20153.( 1 + 2015 ) + ..... + 20152015.( 1 + 2015 )

⇒ T = 2015.2016 + 20153.2016 + 20155.2016 + ... + 20152015.2016

⇒ T = 2016.( 2015 + 20153 + 20155 + .... + 20152015 )

Vì 2016 ⋮ 2016 nên A ⋮ 2016 ( đpcm )

2 tháng 12 2018

Do 2015^2016 lẻ nên 2015^2016-1 và 2015^2016+1 chẵn nên chia hết cho 2 do đó A chia hết cho 4

Ta có 3 số nguyên lên liếp 2015^2016-1; 2015^2016 và 2015^2016+1 luôn có 1 số chia hết cho 3

Do 2015 ko chia hết cho 3 nên 2015^2016 ko chia hết cho 3

Nên 2015^2016-1 hoặc 2015^2016+1 chia hết cho 3 

Suy ra A chia hết cho 3

Mà A chia hết cho 4 nên A sẽ chia hết cho 3.4=12

Vậy A chia hết cho 12

26 tháng 5 2016

phân số 2015/2014 phải ko, bn k cho mk nhé , mk trả lời câu hỏi của bạn rồi đấy

29 tháng 11 2016

Ta có:

\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

Xét đẳng thức phụ:

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Thay vào -M ta có:

\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)

Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)

Ta có:

\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)

29 tháng 11 2016

Bạn làm ngược từ cuối á .... cũng sáng tạo ý

26 tháng 11 2015

Nguyen Huu The Dũng mới lấy lại đc nick rồi

Monkey D.Luffy Đề lạ

26 tháng 11 2015

ồ,được thôi,dù có đánh chế tôi cũng không trả lời câu hỏi cho hạng người như thế

17 tháng 1 2016

-) CM: a-6b chia hết cho 5:

  Ta có: a-6b = a-b-5b

Vì 5 chia hết cho 5 nên 5b chia hết cho 5           

Mà a-b chia hết cho 5 nên a-b-5b chia hết cho 5

Hay a-6b chia hết cho 5

-) CM: 2a-7b chia hết cho 5

Ta có: 2a-7b=2a-2b-5b=2(a-b)-5b

Vì 5 chia hết cho 5 nên 5b chia hết cho 5

Mà a-b chia hết cho 5 nên 2(a-b) chia hết cho 5

Do đó, 2(a-b)-5b chia hết cho 5 hay 2a-7b chia hết cho 5

-) CM: 26a-31b+2015 chia hết cho 5

Ta có: 26a-31b+2015= 26a-26b-5b+403.5=26(a-b)+5(403-b)

Vì 5 chia hết cho 5 nên 5(403-b) chia hết cho 5

Mà a-b chia hết cho 5 nên 26(a-b) chia hết cho 5

Do đó 26(a-b)+5(403-b) chia hết cho 5

Hay 26a-31b+2015 chia hết cho 5

 

tick nha....!!!!!!!!!!!!!!!!!