cho tam giác ABC. điểm D thuộc BC , kẻ DE// AC [E thuộc AB] , kẻ DF //AB [F thuộc AC ] gọi I là trung điểm của EF. chứng minh rằng I là trung điểm của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì DF // AE (DF//AB; E ) nên (2 góc so le trong)
Hay ( I )
Xét và có:
(c/m trên)
IE=IF(I là trung điểm của EF)
(2 góc đối đỉnh)
=>
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Vì DF // AE (DF//AB; E ∈AB∈AB) nên ˆAEF=ˆEFDAEF^=EFD^ (2 góc so le trong)
Hay ˆAEI=ˆIFDAEI^=IFD^ ( I ∈EF∈EF )
Xét ΔAEIΔAEI và ΔDFIΔDFI có:
ˆAEI=ˆIFDAEI^=IFD^ (c/m trên)
IE=IF(I là trung điểm của EF)
ˆAIE=ˆDIFAIE^=DIF^ (2 góc đối đỉnh)
=> ΔAEI=ΔDFI(g.c.g)ΔAEI=ΔDFI(g.c.g)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của BC
DE//AC
Do đó: E là trung điểm của AB
Xét tứ giác AIBD có
E là trung điểm của AB
E là trung điểm của ID
Do đó: AIBD là hình bình hành
mà AB\(\perp\)DI
nên AIBD là hình thoi
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nên AEDF là hình chữ nhật
b: Xét ΔABC có CF/CA=CD/CB
nên DF//AB và DF=AB/2
=>Di//AB và DI=AB
=>ABDI là hình bình hành
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
Ta có hình vẽ:
Ta có: AB // DF hay AE // DF
=> góc AEI = góc IFD (slt)
Ta có: AE // DE => góc EAI = góc IDF (slt)
Tổng ba góc trong tam giác = 1800
=> 1800 - AEI - EAI = 1800 - IFD - IDF
hay góc AIE = góc DIF (*)
Ta có: góc AEI = góc IFD (cmt) (**)
EI = FI (I là trung điểm EF) (***)
Từ (*),(**),(***) => tam giác AEI = tam giác DFI
=> AI = DI (2 cạnh tương ứng) (1)
Ta có: góc AIE = góc DIF (chứng minh trên)
Mà góc AIE + góc AIF = 1800 (kề bù)
=> góc DIF + góc AIF = 1800
hay AID = 1800
hay A,I,D thẳng hàng với nhau (2)
Từ (1),(2) => I là trung điểm của AD
-> Ta có đpcm.
Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)
Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )
Xét \(\Delta AEI\) và \(\Delta DFI\) có:
\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)
IE=IF(I là trung điểm của EF)
\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)
=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
bn ơi hình như sai đề