Cho n thuộc N
a) Cm 5^n-1 chia hết cho 4
b) Cm n^2+n+1 \(⋮̸\)4 và \(⋮̸\) 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
\(1^n+2^n+3^n+4^n\)
\(=\left(4^n+1\right)+\left(2^n+3^n\right)\)
\(=\left(4+1\right)\left(4^{n-1}-4^{n-2}+...-4+1\right)+\left(2+3\right)\left(2^{n-1}-2^{n-2}.3+...-2.3^{n-2}+3^{n-1}\right)\)
\(=5\left(4^{n-1}-4^{n-2}+...-4+1\right)+5\left(2^{n-1}-2^{n-2}.3+...-2.3^{n-2}+3^{n-1}\right)⋮5\)(đpcm)
Vậy \(1^n+2^n+3^n+4^n⋮5\)
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-\left(6n^2-3n+10n-5\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10\)
\(=2\left(12n+5\right)\) chia hết cho 2
=> \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2 (Đpcm)
a: \(5^n-1=\left(5-1\right)\cdot A=4\cdot A⋮4\)
b: \(A=n^2+n+1=n\left(n+1\right)+1\)
Vì n;n+1 là hai số tự nhiên liên tiếp
nên \(n\left(n+1\right)⋮2\)
\(\Leftrightarrow A⋮̸2\)
=>\(A⋮̸4\)