K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

à

mik chưa đọc kĩ câu mà bn nói....leu

theo mik thì k có cái nào trong mấy cái đó

4 tháng 12 2016

1,3,4

26 tháng 1 2022

Ta có:

Áp dụng định lý Pi-ta-go, ta có công thức để tìm đường chéo hình vuông\(=a\sqrt{2}\)

\(\Rightarrow\)Cứ sau một lần như thế thì cạnh hình vuông sẽ tăng lên \(\sqrt{2}\)hay diện tích hình vuông sau 1 lần như thế thì sẽ gấp\(\sqrt{2}^2=4lần\)

\(\Rightarrow\)Cứ một lần hình vuông bằng cạnh hình vuông trước thì diện tích sẽ gấp 4 lần:

\(\Rightarrow\)Nếu diện tích hình vuông thứ 2022 hay lặp lại cái trên 2022 lần thì diện tích sẽ gấp \(2022\cdot4=8088lần\)hình vuông ban đầu.

26 tháng 1 2022

Gọi diện tích các hình vuông là S1 ; S2 ; ... S2022 với độ dài cạnh tương ứng là a ; a2 ; a3 ; ... ; a2022

Dựng hình vuông thứ n có cạnh an với độ dài cạnh là đường chéo hình vuông có cạnh an - 1 (n \(\inℕ^∗\) )

=> Sn = (an)2 (1)

Sn - 1 = (an-1)2 (2) 

Khi đó (an)2= 2(an - 1)2 

=> \(a_n=\sqrt{2}a_{n-1}\)(3) 

Từ (3)(2)(1) => \(S_n=2.S_{n-1}\)

Khi đó với 1 < n < 2023

=> \(S_{2022}=2S_{2021}=2^2S_{2020}=...=2^{2021}S_1\)= 22021a2

1. cho hình vuông ABCD.Nối điểm chính giữa các cạnh hình vuông thứ nhất ta được hình vuông thứ 2. Cứ tiếp tục như vậy ta đc các hình vuông thứ ba ,thứ tư...Hãy tìm số tam giác trong hình khi vẽ như vậy đến hình vuông thứ 100.2.Một hình lập phương có thể tính 1m3 đc tạo nên từ các khối lập phương nhỏ có thể tích 1m3.Hỏi xếp liên tiếp các khối lập phương nhỏ ấy theo một đường...
Đọc tiếp

1. cho hình vuông ABCD.Nối điểm chính giữa các cạnh hình vuông thứ nhất ta được hình vuông thứ 2. Cứ tiếp tục như vậy ta đc các hình vuông thứ ba ,thứ tư...Hãy tìm số tam giác trong hình khi vẽ như vậy đến hình vuông thứ 100.
2.Một hình lập phương có thể tính 1m3 đc tạo nên từ các khối lập phương nhỏ có thể tích 1m3.Hỏi xếp liên tiếp các khối lập phương nhỏ ấy theo một đường thẳng thì dài bao nhiêu km?
3.cho tam giác ABC.Nối trung điểm của các cạnh tam giác ABC ta đc tam giác thứ hai,cứ tiếp tục như vậy ta đc các tam giác thứ ba,thứ tư....Có tất cả bao nhiêu tam giác trên hình khi vẽ như vậy đến tam giác thứ 50.
4.Hai cạnh góc vuông của một tam giác vuông ABC lần lượt là 3cm và 4cm,hãy tính cạnh còn lại của tam giác vuông này.

0
8 tháng 3 2017

ko cho số đo gì thì tính bằng mắt à

8 tháng 3 2017

chắc là ko có hình nào đâu(mình đoán thế)

Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dài), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).a) Kí hiệu \({a_n}\) là diện tích của hình vuông thứ \(n\) và \({S_n}\) là tổng diện tích của \(n\) hình vuông đầu tiên. Viết công...
Đọc tiếp

Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dài), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

a) Kí hiệu \({a_n}\) là diện tích của hình vuông thứ \(n\) và \({S_n}\) là tổng diện tích của \(n\) hình vuông đầu tiên. Viết công thức tính \({a_n},{S_n}\left( {n = 1,2,3,...} \right)\) và tìm \(\lim {S_n}\) (giới hạn này nếu có được gọi là tổng diện tích của các hình vuông).

b) Kí hiệu \({p_n}\) là chu vi của hình vuông thứ \(n\) và \({Q_n}\) là tổng chu vi của \(n\) hình vuông đầu tiên. Viết công thức tính \({p_n}\) và \({Q_n}\left( {n = 1,2,3,...} \right)\) và tìm \(\lim {Q_n}\) (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

1
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Gọi \({u_n}\) là độ dài cạnh của hình vuông thứ \(n\).

Ta có: \({u_1} = 1;{u_2} = \frac{{{u_1}}}{2}.\sqrt 2  = \frac{{{u_1}}}{{\sqrt 2 }};{u_3} = \frac{{{u_2}}}{2}.\sqrt 2  = \frac{{{u_2}}}{{\sqrt 2 }};...\)

Từ đó ta thấy \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = 1\), công bội \(q = \frac{1}{{\sqrt 2 }}\).

Vậy \({u_n} = {u_1}.{q^{n - 1}} = 1.{\left( {\frac{1}{{\sqrt 2 }}} \right)^{n - 1}} = \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}},n = 1,2,3,...\)

Diện tích của hình vuông thứ \(n\) là: \({a_n} = u_n^2 = {\left( {\frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}}} \right)^2} = \frac{1}{{{2^{n - 1}}}},n = 1,2,3,...\)

Vậy \({S_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{n - 1}}}}\)

Đây là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\), công bội \(q = \frac{1}{2}\).

Vậy \({S_n} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2\left( {1 - \frac{1}{{{2^n}}}} \right)\).

\(\lim {S_n} = \lim 2\left( {1 - \frac{1}{{{2^n}}}} \right) = 2\left( {1 - \lim \frac{1}{{{2^n}}}} \right) = 2\left( {1 - 0} \right) = 2\).

b) Chu vi của hình vuông thứ \(n\) là: \({p_n} = 4{u_n} = 4.\frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}} = \frac{4}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}},n = 1,2,3,...\)

Vậy \({Q_n} = 4 + \frac{4}{{\sqrt 2 }} + \frac{4}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{4}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}} = 4\left( {1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}}} \right)\)

\(1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\), công bội \(q = \frac{1}{{\sqrt 2 }}\).

Vậy \(1 + \frac{1}{{\sqrt 2 }} + \frac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + ... + \frac{1}{{{{\left( {\sqrt 2 } \right)}^{n - 1}}}} = 1.\frac{{1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^n}}}{{1 - \frac{1}{{\sqrt 2 }}}} = \left( {2 + \sqrt 2 } \right)\left( {1 - \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right)\).

\( \Rightarrow {Q_n} = 4\left( {2 + \sqrt 2 } \right)\left( {1 - \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right)\)

\(\begin{array}{l}\lim {Q_n} = \lim 4\left( {2 + \sqrt 2 } \right)\left( {1 - \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right) = 4\left( {2 + \sqrt 2 } \right)\left( {1 - \lim \frac{1}{{{{\left( {\sqrt 2 } \right)}^n}}}} \right)\\ &  = 4\left( {2 + \sqrt 2 } \right)\left( {1 - 0} \right) = 4\left( {2 + \sqrt 2 } \right)\end{array}\).

3 tháng 8 2021

B

30 tháng 7 2015

bạn cũng có thể tham khảo cách giải này, đây là đề thi violympic cấp quốc gia đúng không

Hình vuông được chia thành 16 hình tam giác nhỏ bằng nhau (không chứng minh).

- Hình tam giác đơn có 16 hình

- Hình tam giác đôi có 8 hình.

- Hình tam giác tứ có 4 hình.

- Hình tam giác bát có 4 hình.

Vậy tổng diện tích của tất cả các tam giác so với 1 tam giác nhỏ bằng:

16x1 + 8x2 + 4x4 + 4x8 = 80 tam giác nhỏ

Tổng diện tích các hình tam giác gấp diện tích hình vuông số lần là: 

80 : 16 = 5 lần

Vậy tổng diện tích các hình tam giác sẽ là:

156,25 x 5 = 781,25 cm2

ĐS:  781,25 (cm2)

29 tháng 3 2016

Giải:

Hình vuông được chia thành 16 hình tam giác nhỏ bằng nhau (không chứng minh).

- Hình tam giác đơn có 16 hình

- Hình tam giác đôi có 8 hình.

- Hình tam giác tứ có 4 hình.

- Hình tam giác bát có 4 hình.

Vậy tổng diện tích của tất cả các tam giác so với 1 tam giác nhỏ bằng:

16x1 + 8x2 + 4x4 + 4x8 = 80 tam giác nhỏ

Tổng diện tích các hình tam giác gấp diện tích hình vuông số lần là: 

80 : 16 = 5 lần

Vậy tổng diện tích các hình tam giác sẽ là:

156,25 x 5 = 781,25 cm2

ĐS:  781,25 (cm2)