Cho tam giác ABC cân tại A .Gọi M là tia phân giác góc ngoài tại A . Chứng minh AM // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B m 2 1
Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó
Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)
Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)
Lại có tam giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)
Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)
Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau
Do đó Am//BC . (dpcm)
TH1: AE là tia pgiac góc B'AC (AB' là tia đối của tia AB)
Xét B'AC là góc ngoài tgiac ABC tại đỉnh A => góc B'AC = góc B + góc C
Mà tgiac ABC cân tại A => góc B = góc C
=> Góc C = 1/2 góc B'AC
Lại có AE là tia pgiac góc B'AC => góc EAC = 1/2 góc B'AC
=> Góc C = góc EAC
Mà hai góc này so le trong => AE song song BC.
cmtt với trường hợp AE là tia pgiac góc C'AB (AC' là tia đối của tia AC)
Vậy ta có đpcm.
Hình tự vẽ nhé !
Giải
a) Xét tam giác AMB và tam giác AMC có
AB = AC ( gt )
MB = MC ( vì M là trung điểm của BC )
AM cạnh chung
Do đó tam giác AMB = tam giác AMC
b) Vì hai tam giác AMB = AMC nên góc BAM = góc CAM
Vì góc BAM = góc CAM nên AM là tia phân giác của góc BAC
c)Vì hai tam giác AMB = AMC nên góc AMB = góc AMC
mà góc AMB + góc AMC = 1800 nên góc AMB = 900
Vì góc AMB =900 nên AM vuông góc với BC
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: ta có: ΔABC cân tại A
mà AM là đường phân giác
nên AM là đường cao
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Giải:
Áp dụng tính chất góc ngoài của một tam giác vào \(\Delta ABC\) ta có:
\(\widehat{B}\) + \(\widehat{C}\)= \(\widehat{CAx}\) (1)
Do \(\Delta ABC\) cân tại A
=> \(\widehat{B}\)=\(\widehat{C}\) (2)
Lại do: AM là tia phân giác của \(\widehat{CAx}\)
=> \(\widehat{xAm}\)=\(\widehat{CAM}\)= \(\frac{1}{2}\)\(\widehat{Cax}\) ( 3)
Kết hợp (1), (2), (3) suy ra: \(\widehat{B}\)=\(\widehat{C}\)=\(\widehat{xAM}\)=\(\widehat{CAM}\)= \(\frac{1}{2}\)\(\widehat{Cax}\)
Ta có: \(\widehat{C}\)=\(\widehat{CAM}\)
Mà hai góc ở vị trí so le trong
=> AM//BC
Học tốt !Đỗ thị như quỳnh
thank