Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để biểu thức có nghĩa thì 3x-5>=0
hay x>=5/3
b: \(=20\sqrt{3}-3\cdot6\sqrt{3}+\dfrac{1}{2}\cdot10\sqrt{3}=2\sqrt{3}+5\sqrt{3}=7\sqrt{3}\)
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
b: Xét ΔOEF có
OM là đường cao
OM là đường phân giác
Do đó: ΔOEF cân tại O
mà OM là đường cao
nên M là trung điểm của FE
hay FM=EM
\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)
We substitute :
\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)
Then,
\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)
Finally,
\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)
Câu 3:
a) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}=\sqrt{45-2.3\sqrt{5}.2+4}-\sqrt{45+2.3\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2.3\sqrt{5}.2+2^2}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(=3\sqrt{5}-2-3\sqrt{5}-2\)
\(=-4\)
b) \(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{36-2.6.\sqrt{5}+5}-\sqrt{41+2.6.\sqrt{5}+5}\)
\(=\sqrt{6^2-2.6.\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{6^2+2.6.\sqrt{5}.+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)
\(=\left|6-\sqrt{5}\right|-\left|6+\sqrt{5}\right|\)
\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)