Giúp mình với
5880cc = ........... l
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x-y/ +/y-x/ =13
=>/x-y/ +/x-y/ =13
=> 2/x-y/ =13
=> /x-y/=13/2
=> x -y =13/2
hoặc x -y =-13/2
Ta co : \(\left|x+25\right|\ge0\forall x\in Z\)
\(\left|-y+5\right|\ge0\forall x\in Z\)
Mà : |x + 25| + |-y + 5| = 0
Nên : \(\hept{\begin{cases}\left|x+25\right|=0\\\left|-y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+25=0\\-y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-25\\y=5\end{cases}}\)
Bài này có 2 cách giải nhưng mk khuyên bạn nên làm cách thứ 2, cách 1 chỉ đúng với một số bài toán, một số bài khác thì không sai nhưng thiếu giá trị của x. Cách thứ 2 thì có thể áp dụng với tất cả bài toán nha bạn :)
* Cách 1 :
\(\left|x-5\right|-x=3\)
\(\Leftrightarrow\)\(\left|x-5\right|=x+3\)
Vì \(\left|x-5\right|\ge0\) nên \(x+3\ge0\)\(\Leftrightarrow\)\(x\ge-3\)
\(PT\)\(\Leftrightarrow\)\(x-5=x+3\)
\(\Leftrightarrow\)\(x-x=3+5\)
\(\Leftrightarrow\)\(0=8\) ( vô lý )
Vậy không có x thoả mãn đề bài ( thật sự là có nhưng cách này không tìm được x )
* Cách 2 :
\(\left|x-5\right|-x=3\)
\(\Leftrightarrow\)\(\left|x-5\right|=x+3\)
+) Nếu \(x-5\ge0\)\(\Leftrightarrow\)\(x\ge5\) ta có :
\(x-5=x+3\)
\(\Leftrightarrow\)\(x-x=3+5\)
\(\Leftrightarrow\)\(0=8\) ( vô lý )
+) Nếu \(x-5< 0\)\(\Leftrightarrow\)\(x< 5\) ta có :
\(-\left(x-5\right)=x+3\)
\(\Leftrightarrow\)\(-x+5=x+3\)
\(\Leftrightarrow\)\(x+x=5-3\)
\(\Leftrightarrow\)\(2x=2\)
\(\Leftrightarrow\)\(x=\frac{2}{2}\)
\(\Leftrightarrow\)\(x=1\) ( thoả mãn \(x< 5\) )
Vậy \(x=1\)
Chúc bạn học tốt ~
Bài làm:
a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)
Vậy Min(A) = 0 khi x=3/4
b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)
Vậy Max(B) = 0 khi x = -2020
A = | x - 3/4 |
\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)
Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4
Vậy AMin = 0 , đạt được khi x = 3/4
B = - | x + 2020 |
\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)
\(\Rightarrow B\le0\)
Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020
Vậy BMax = 0, đạt được khi x = -2020
5880 triệu l
= 0,00588l