Bài 5 Cho tam giác ABC, biết rằng AB = 9cm, AC=12cm, BC = 15c, AH là dường cao
a) Chứng minh tam giác ABC vuông b) Tính AH; BH
c)Vẽ HE vuông góc AB tại E ; Vẽ HI vuông góc AC tại I. Chứng minh AE.AB=AI.AC
d) Chứng minh :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔHBA~ΔABC
b: Ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(BC=\sqrt{225}=15\left(cm\right)\)
Xét ΔBAC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>\(BH=\dfrac{81}{15}=5,4\left(cm\right)\)
c: ta có: HK\(\perp\)AB
AC\(\perp\)AB
Do đó: HK//AC
Xét ΔCAB có HK//AC
nên \(\dfrac{HK}{AC}=\dfrac{BH}{BC}\)
=>\(\dfrac{HK}{12}=\dfrac{5.4}{15}=\dfrac{54}{150}=\dfrac{9}{25}\)
=>\(HK=12\cdot\dfrac{9}{25}=\dfrac{108}{25}=4,32\left(cm\right)\)
a: BC=15cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
a.
Vì ΔABC vuông tại A nên theo định lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 92 + 122
\(\Rightarrow\) BC2 = 225
\(\Rightarrow\) BC2 = \(\sqrt{225}\) = 15 cm
b. Xét ΔABC và Δ HBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) Δ HBA (g.g)
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
DO đó: ΔABC∼ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5.4\left(cm\right)\)
a) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{B}chung.\)
\(\Rightarrow\) \(\Delta ABC\sim\text{}\text{}\Delta HBA\left(g-g\right).\)
b) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
\(AB^2=HB.BC\) (Hệ thức lượng).
\(\Rightarrow9^2=HB.15.\\ \Rightarrow HB=5,4\left(cm\right).\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15\left(cm\right)\)
Xét \(\Delta AHB\) và \(\Delta CAB\) có:
\(\widehat{AHB}=\widehat{CAB}=90^0\);
\(\widehat{B}\) chung
\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)
b) Do \(\Delta AHB\sim\Delta CAB\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{9.12}{15}=7,2\left(cm\right)\)
c) Xét \(\Delta BAD\) và \(\Delta BHK\) có:
\(\widehat{BAD}=\widehat{BHK}=90^0\)
\(\widehat{ABD}=\widehat{HBK}\) (tính chất phân giác)
\(\Rightarrow\Delta BAD\sim\Delta BHK\left(g.g\right)\Rightarrow\dfrac{BA}{BD}=\dfrac{BH}{BK}\Rightarrow BA.BK=BH.BD\)
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow225=81+144\)* đúng *
Vậy tam giác ABC vuông tại A ( pytago đảo )
b, Xét tam giác ABC vuông tại A, đường cao AH
\(AH.BC=AC.AB\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12.9}{15}=\frac{36}{5}\)
c, Xét tam giác AHB vuông tại H, đường cao HE
Ta có : \(AH^2=AE.AB\)( hệ thức lượng (1))
Xét tam giác AHC vuông tại H, đường cao HI
Ta có : \(AH^2=AI.AC\)( hệ thức lượng (2))
Từ (1) ; (2) suy ra \(AE.AB=AI.AC\)