cho biểu thức : P = 1/9 + 1/10 + 1/11 + .... + 1/78 + 1/79
chứng tỏ rằng : P < 28/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
911 + 1 chia hết cho 10 vì
Ta có: 911 chia hết cho 10 - 1
Suy ra 911 chia hết cho 9
Mà 9 mũ bao nhiêu cũng chia hết cho 9 nên 911 + 1 chia hết cho 10
Tớ nghĩ thế thôi!
\(A=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)
\(A=\dfrac{4}{3}+\dfrac{10}{3^2}+\dfrac{28}{3^3}+...+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)
\(A=\left(1+\dfrac{1}{3}\right)+\left(1+\dfrac{1}{3^2}\right)+\left(1+\dfrac{1}{3^3}\right)+...+\left(1+\dfrac{1}{3^{99}}\right)\)
\(A=\left(1+1+....+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(A=99+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Gọi \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)là T
\(T=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(3T=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
\(3T-T=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(2T=1-\dfrac{1}{3^{99}}\)
\(T=\left(1-\dfrac{1}{3^{99}}\right):2\)
\(T=\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}\)
\(=>A=99+T=99+\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}=99,5-\dfrac{1}{3^{99}\cdot2}< 100\)
Vậy A < 100
Xét vế trái : \(T=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
Ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
ta có \(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}< \frac{1}{10}+\frac{1}{10}+..+\frac{1}{10}=1\)
\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{39}< \frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=1\)
\(\frac{1}{40}+\frac{1}{41}+..+\frac{1}{79}< \frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}=1\)
Vậy \(P< \frac{1}{9}+1+1+1=\frac{28}{9}\)