cho biểu thức : P = 1/9 + 1/10 + 1/11 + .... + 1/78 + 1/79
chứng tỏ rằng : P < 28/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 9^11+1= (9^2.10).9+1
= (...1)^10.9+1
=(...1).9+1
=(....9)+1
= ........0 \(⋮\) 10
=> 9^11+1\(⋮\) 10
Ta có: 911+1= (92.10).9+1
= (...1)10.9+1
=(...1).9+1
=(....9)+1
= ........0
=> 911+1 chia hết cho 10(ĐPCM)
Xét vế trái : \(T=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
Ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
\(A=\frac{10}{27}+\frac{9}{16}\frac{11}{34}\)
Ta có: \(\frac{10}{27}< >\backslash\left(\frac{9}{16}< >\backslash\left(\frac{11}{34}< >Nên\backslash\left(A< >b\right)\right)\right)\backslash\left(B=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}\right)\)
\(B>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=11.\frac{1}{22}=\frac{1}{2}\)
Nên \(B>\frac{1}{2}\)
ta có \(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}< \frac{1}{10}+\frac{1}{10}+..+\frac{1}{10}=1\)
\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{39}< \frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=1\)
\(\frac{1}{40}+\frac{1}{41}+..+\frac{1}{79}< \frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}=1\)
Vậy \(P< \frac{1}{9}+1+1+1=\frac{28}{9}\)