tìm a,b biết
a/b = 4/5 BCNN (a,b) = 140
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
a) ƯCLN (a,b) . BCNN ( a,b) = a . b
=> a . b = 180 : 60 = 3
Giả sử a > b
Đặt : a = 3m
b = 3n
m > n và ƯCLN (m,n) = 1
3m . 3n = 180
9 ( m.n) = 180
m . n = 20
Bạn lập bảng tìm các cặp số m,n có ƯCLN là 1 là xong
( m ,n ) = ( 5,4) ; ( 20,1)