Khá giỏi giải nâng cao : Hai bài OK
Hơi KHó 1) Chứng minh rằng n3 - 61n : hết cho 6 với mọi n thuộc số tự nhiên hay ( N ) và n > 1
Rất KHÓ 2) Chứng minh rằng n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24 với mọi n thuộc số tự nhiên hay ( N ) và n > 1
AI học giỏi giải đúng 10000% nhá THANHK YOU
1) Giải
Vì n thuộc N và n > 1
Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n
Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)
=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp
Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1
Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1
Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6
2) Giải
Ta có : n( n + 2 ) ( 25n2 - 1 )
=> n( n + 2 ) ( n2 + 24n2 - 1 )
=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]
=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2
=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)
Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n
vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp
=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3
ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)
Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)
Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1
Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24