K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

Ai hộ mình với ạ ._.

27 tháng 7 2023

Xét Δ vuông ABH ta có :

\(tanB=\dfrac{BH}{AH}\Rightarrow BH=AH.tanB\)

Xét Δ vuông ACH ta có :

\(tanC=\dfrac{CH}{AH}\Rightarrow CH=AH.tanC\)

Ta lại có :

\(BC=BH+CH\)

\(\Leftrightarrow2AH=AH.tanB+AH.tanC\left(AH=\dfrac{1}{2}BC\right)\)

\(\Leftrightarrow2AH=AH.\left(tanB+tanC\right)\)

\(\Leftrightarrow tanB+tanC=2\)

\(\Leftrightarrow tanC=2-tanB=2-tan75^o=2-3,73=-1,73\)

\(\Leftrightarrow C=-60^o\) (theo góc lượng giác)

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

12 tháng 9 2016

A B C H

Ta có: Tam giác ABC vuông và có góc B bằng 30 độ

=> góc C = 60 độ

=> Tam giác ABC là nửa tam giác đều

=> \(\frac{BC\sqrt{3}}{2}=AB=5\left(cm\right)\)

=> BC= \(\frac{5.2}{\sqrt{3}}=\frac{10}{\sqrt{3}}\)

=> AC = \(\frac{10}{\sqrt{3}}:2=\frac{5\sqrt{3}}{3}\) (cm)

=> AH = \(\frac{AB.AC}{BC}=\frac{5}{2}\left(cm\right)\)

b, Stam giác ABC=\(\frac{AB.AC}{2}=\frac{25\sqrt{3}}{6}\left(cm^2\right)\)

26 tháng 7 2019

A B C H

Thiếu đề 

26 tháng 7 2019

Áp dụng tỉ số lượng giác là ra thôi bạn!

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

21 tháng 9 2023

a) Xét ΔAHB vuông tại H áp dụng định lý Py-ta-go ta có:

\(AB^2=AH^2+HB^2\)

\(\Rightarrow AB=\sqrt{AH^2+HB^2}\)

\(\Rightarrow AB=\sqrt{12^2+5^2}=13\left(cm\right)\) 

b) Xét ΔAHC vuông tại H áp dụng định lý Py-ta-go ta có:

\(AC^2=AH^2+HC^2\)

\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)

\(\Rightarrow HC=\sqrt{20^2-12^2}=16\left(cm\right)\)

\(\Rightarrow BC=HB+HC=5+16=21\left(cm\right)\)

\(\Rightarrow C_{ABC}=BC+AB+AC=21+13+20=54\left(cm\right)\)

\(\widehat{A}=180^0-48^0-25^0=107^0\)

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

=>\(\dfrac{AB}{sin25}=\dfrac{AC}{sin48}=\dfrac{20}{sin107}\)

=>\(AB\simeq8,84\left(cm\right);AC\simeq15,54\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot8.84\cdot15.54\cdot sin107\simeq65.69\left(cm^2\right)\)

=>\(\dfrac{1}{2}\cdot AH\cdot20=65.69\)

=>AH=6,569(cm)