K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

Ta có hình vẽ:

O P M K I a/ Xét tam giác OPK và tam giác IPK có:

OP = IP (GT)

PK: cạnh chung

\(\widehat{OPK}\)=\(\widehat{IPK}\) (GT)

=> tam giác OPK = tam giác IPK (c.g.c)

b/ Ta có: tam giác OPK = tam giác IPK (câu a)

=> \(\widehat{O}\)=\(\widehat{I}\)=900 (2 góc tương ứng)

Vậy KI \(\perp\)BM (đpcm)

c/ Đề bài bạn cho không có các điểm A,B,C...?

26 tháng 11 2016

Ta có hình vẽ sau:

 

 

 

 

O K P M I 1 2

a) Xét ΔOPK và ΔIPK có:

PK: Cạnh chung

\(\widehat{P_1}\) = \(\widehat{P_2}\) (gt)

PO = PI (gt)

=> ΔOPK = ΔIPK (c.g.c)

b) Vì ΔOPK = ΔIPK (ý a)

=> \(\widehat{O}\) = \(\widehat{I}\) = 90o

=> KI \(\perp\) BM (đpcm)

Không có BC nên k làm được nha bạn^^^

29 tháng 2 2020

a. xét tam giác OBK và tam giác IBK có : BK chung

góc OBK = góc IBK do BK là pg của góc OBM (gt)

OB = BI (gt)

=> tam giác OBK = tam giác IBK (c-g-c)

b, tam giác OBK = tam giác IBK (câu a)

=> góc KOB = góc KIB (đn)

có góc KOB = 90

=> góc KIB = 90 

=> KI _|_ BM (đn)

c, xét tam giác KOA và tam giác KIM có : góc AKO = góc MKI (đối đỉnh)

KO = KI do tam giác OBK = tam giác IBK (câu a)

góc KOA = góc KIM = 90

=> tam giác KOA = tam giác KIM (cgv-gnk)

=> AK = KM (Đn)

24 tháng 12 2021

Hình vẽ đây :

undefined

a) Xét ΔOBK và ΔIBK có:

          BO = BI (gt)

          ∠OBK = ∠IBK (BK là tia phân giác của ∠B)

          BK: cạnh chung

⇒ ΔOBK = ΔIBK (c.g.c)

b) Ta có: ΔOBK = ΔIBK (theo a)

⇒ ∠BOK = ∠BIK (2 cạnh tương ứng)

mà ∠BOK = 90o90o (do ΔOBM vuông tại O)

⇒ ∠BIK = 90o90o  ⇒ KI ⊥ BM

c) Ta có: ΔOBK = ΔIBK (theo a)

⇒ OK = IK (2 cạnh tương ứng)

     Xét ΔOAK và ΔIMK có:

          ∠AOK = ∠MIK =  90o90o

           OK = IK (cmt)

          ∠OKA = ∠IKM (2 góc đối đỉnh)

⇒ ΔOAK = ΔIMK (g.c.g)

⇒ KA = KM (2 cạnh tương ứng)

           

24 tháng 12 2021

a) Xét ΔOBK và ΔIBK có:

          BO = BI (gt)

          ∠OBK = ∠IBK (BK là tia phân giác của ∠B)

          BK: cạnh chung

⇒ ΔOBK = ΔIBK (c.g.c)

b) Ta có: ΔOBK = ΔIBK (theo a)

⇒ ∠BOK = ∠BIK (2 cạnh tương ứng)

mà ∠BOK = 90o90o (do ΔOBM vuông tại O)

⇒ ∠BIK = 90o90o  ⇒ KI ⊥ BM

c) Ta có: ΔOBK = ΔIBK (theo a)

⇒ OK = IK (2 cạnh tương ứng)

     Xét ΔOAK và ΔIMK có:

          ∠AOK = ∠MIK =  90o90o

           OK = IK (cmt)

          ∠OKA = ∠IKM (2 góc đối đỉnh)

⇒ ΔOAK = ΔIMK (g.c.g)

⇒ KA = KM (2 cạnh tương ứng)

           

17 tháng 12 2014

a) xét tam giác OBK và tam giác IBK có:

      KB là cạnh chung 

     góc OBK= góc KBI (do BI là tia phân giác của góc B)

      OB=IB (gt)

  suy ra :tam giác OBK = tam giác KBI(1)

b) từ (1) suy ra góc KOB = góc KIB=900( 2 góc tương ứng ) (2)

c)  xét tam giác OAK và tam giác IMK có:

      góc AKO= góc IKM ( đối đỉnh)

      góc AOK= góc KIM

      OK=KI ( 2 góc tươg ứng chứng mih ở câu a)

     suy ra tam giác OAK= tam giác IMK

    suy ra AK=KM (2 cạnh tương ứng )

c)

16 tháng 12 2014

bai nay de thoi ma

 

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

1: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD