Chứng minh rằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cho hình bình hành ABCD, tia phân giác của góc D và góc B cắt AB và CD tại M và N
a, chứng minh góc AMD = góc ABN
b, Chứng minh tứ giác DMBN là hình bình hành
c, tia phân giác của góc A cắt DM và BN tại H và G, tia phân giác của góc C cắt DM và BN tại E và F Chứng minh tứ giác HEFG là hình chữ nhật
a: Xét tứ giác AECF có
AF//CE
AF=CE
Do đó: AECF là hình bình hành
b: Xét ΔDHC có
E là trung điểm của DC
EI//HC
Do đó: I là trung điểm của DH
=>DI=IH(1)
Xét ΔAIB có
F là trung điểm của AB
FH//AI
Do đó: H là trung điểm của BI
=>BH=HI(2)
Từ (1) và (2) suy ra DI=IH=BH

a) Vì abcd chia hết cho 4 nên 10c + d chia hết cho 4
Mặt khác 10c + d = 8c + 2c + d
Vì 8c chia hết cho 4 nên 2c + d cũng chia hết cho 4

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.

abba=1000a+100b+10b+a=1001a+110b=11(91a+10b) chia hết cho 11
aaa=111a vậy aaa chia hết cho 111
Ta có :
\(\begin{cases}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\.....\\\frac{1}{100^2}< \frac{1}{99.100}\end{cases}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
..........................
\(\frac{1}{100^2}=\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
Vì \(1-\frac{1}{100}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)