a, Tìm x biết 1+5+9+13+...+x=501501
b, 2x-1+33 = 52+2.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) 5x + 1 - 2.5x = 75
<=> 5x.5 - 2.5x = 75
<=> 5x.3 = 75
<=> 5x = 25
<=> 5x = 52
<=> x = 2
Vậy x = 2
b) 9x + 1 - 5.32x = 324
<=> (32)x + 1 - 5.32x = 324
<=> 32x + 2 - 5.32x = 324
<=> 32x.32 - 5.32x = 324
<=> 32x . 4 = 324
<=> 32x = 81
<=> 32x = 34
<=> 2x = 4
<=> x = 2
Vậy x = 2
a)
Hai số lẻ liên tiếp có dạng 2n + 1 và 2n + 3 (n N).
Gọi d là ước số chung của chúng. Ta có: 2n + 1d và 3n + 3 d
nên (2n + 3) - (2n + 1) d hay 2d
nhưng d không thể bằng 2 vì d là ước chung của 2 số lẻ.
Vậy d = 1 tức là hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau.
b)
Ta có: 5 = 2 + 3; 9 = 4 + 5; 13 = 6 + 7; 16 =7 + 8 ...
Do vậy x = a + (a+1) (a N)
nen 1+5+9+13+16+...+ x=1+2+3+4+5+6+7+...+a+(a+1)=501501
hay (a+1)9a+1+10:2=501501
(a+1)(a+2)-1003002-1001.1002
suy ra :a=1000
do đó :x=1000+(1000+1)=2001
a, 2 3 x + 5 2 x = 2 5 2 + 2 3 - 33
8x+25x = 33
33x = 33
x = 1
b, 260 : x + 4 = 5 2 3 + 5 - 3 3 2 + 2 2
260:(x+4) = 5.13–3.13
x+4 = 260:26
x+4 = 10
x = 6
c, 720 : [ 41 - 2 x - 5 ] = 2 3 . 5
41–(2x–5) = 720:40
2x–5 = 41–18
2x = 28
x = 14
d, 3 2 - 2 x - 12 + 35 = 5 2 + 279 : 3 2
7(x–12)+35 = 56
7(x–12) = 21
x–12 = 3
x = 15
Bài 1:
a) Ta có: \(x\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;2;-2\right\}\)
b) Ta có: \(\left(2x-3\right)+\left(-3x\right)-\left(x-5\right)=40\)
\(\Leftrightarrow2x-3-3x-x+5=40\)
\(\Leftrightarrow-2x+2=40\)
\(\Leftrightarrow-2x=38\)
hay x=-19
Vậy: x=-19
Bài 2:
a) Ta có: \(-45\cdot12+34\cdot\left(-45\right)-45\cdot54\)
\(=-45\cdot\left(12+34+54\right)\)
\(=-45\cdot100\)
\(=-4500\)
b) Ta có: \(43\cdot\left(57-33\right)+33\cdot\left(43-57\right)\)
\(=43\cdot57-43\cdot33+43\cdot33-33\cdot57\)
\(=43\cdot57-33\cdot57\)
\(=57\cdot\left(43-33\right)\)
\(=57\cdot10=570\)
a) \(x+5=20-\left(12-7\right)\)
\(\Rightarrow x+5=20-5\)
\(\Rightarrow x+5=15\)
\(\Rightarrow x=15-5\)
\(\Rightarrow x=10\)
b) \(15-\left(3+2x\right)=2^2\)
\(\Rightarrow3+2x=15-4\)
\(\Rightarrow3+2x=11\)
\(\Rightarrow2x=11-3\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=\dfrac{8}{2}\)
\(\Rightarrow x=4\)
c) \(-11-\left(19-x\right)=50\)
\(\Rightarrow19-x=-11-50\)
\(\Rightarrow19-x=-61\)
\(\Rightarrow x=61+19\)
\(\Rightarrow x=80\)
d) \(159-\left(25-x\right)=43\)
\(\Rightarrow25-x=159-43\)
\(\Rightarrow25-x=116\)
\(\Rightarrow x=25-116\)
\(\Rightarrow x=-91\)
e) \(\left(79-x\right)-43=-\left(17-52\right)\)
\(\Rightarrow\left(79-x\right)-43=52-17\)
\(\Rightarrow79-x-43=35\)
\(\Rightarrow36-x=35\)
\(\Rightarrow x=1\)
f) \(\left(7+x\right)-\left(21-13\right)=32\)
\(\Rightarrow7+x-8=32\)
\(\Rightarrow x-1=32\)
\(\Rightarrow x=32+1\)
\(\Rightarrow x=33\)
g) \(-x+20=-15+8+13\)
\(\Rightarrow-x+20=6\)
\(\Rightarrow x=20-6\)
\(\Rightarrow x=14\)
h) \(-\left(-x+13-142\right)+18=55\)
\(\Rightarrow x-13+142+18=55\)
\(\Rightarrow x+147=55\)
\(\Rightarrow x=55-147\)
\(\Rightarrow x=-92\)