K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta có hình vẽ:

A B C M N 1 2 1 2 Ta có \(_{\Delta}\)ABC có A=90 độ, AM là trung tuyến của \(_{\Delta}\)ABC nên BM=CN.Kẻ MN là tia đối của AM và AM=MN.

Xét \(\Delta\)AMB và \(\Delta\)NMC có:

AM=NM (cách vẽ)

BM=CM( do AM là đường trung tuyến của \(_{\Delta}\)ABC)

Góc M1= góc M2 ( đối đỉnh )

Do đó: \(\Delta\)AMB= \(\Delta\)NMC (c.g.c)

\(\Rightarrow\)AB=CN ( 2 cạnh tương ứng) và

Góc B= góc C1( 2 góc tương ứng) . Mà góc B+ góc C2= 90 độ

Nên C1+C2=90 độ.Hay góc ACN = 90 độ

Xét \(_{\Delta}\)ABC và \(\Delta\)ACN có:

AC chung

Góc BAC= góc ACN=90 độ

AB= CN (CMT)

Do đó \(_{\Delta}\)ABC = \(\Delta\)ACN (c.g.c)

\(\Rightarrow\)BC=AN (2 cạnh tương ứng)

Mà AM=\(\dfrac{AN}{2}\)( AM=MN)

\(\Rightarrow\)AM=\(\dfrac{BC}{2}\)

11 tháng 4 2017

https://hoc24.vn/hoi-dap/question/190925.html đây em nhé!

16 tháng 12 2017

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

20 tháng 2 2018

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Gọi tam giác vuông là ΔABC vuông tại A, đường trung tuyến ứng với cạnh huyền là AM

Trên tia đối của tia MA, lấy điểm D sao cho M là trung điểm của AD

Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AD(gt)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

mà \(\widehat{CAB}=90^0\)(ΔABC cân tại A)

nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: BC=AD(hai đường chéo của hình chữ nhật ABDC)

mà \(AM=\dfrac{AD}{2}\)(M là trung điểm của AD)

nên \(AM=\dfrac{1}{2}BC\)(đpcm)

4 tháng 7 2021

Xét hình chữ nhật ABCD 

=> O là trung điểm của AC và BD => OA=OB=OC=OD

Vì ABCD là hình chữ nhật 

=>\(\widehat{ABC}=90^o\)=>\(\Delta ABC\) vuông tại B

Mà O là trung điểm của AC

 => AO là đường trung tuyến cuả \(\Delta ABC\)

=> AO=BO=CO (cmt)

27 tháng 11 2016

 

Hình học lớp 7

Lấy D đối xứng với A qua M

Xét tam giác ABM và tam giác CDM, ta có:

Góc M1 = M2 ( đối đỉnh)

MB = MC (= \(\frac{1}{2}\)BC)

MA = MD ( = \(\frac{1}{2}\)AD)

=> Tam giác ABM = tam giác DCM (c.g.c)

=> AB = CD ; góc A1= D1

Mặt #, ta có:

Góc A1 = A2 = BAC= 90o

<=> Góc D1 + A2 = 90o

<=> 180o - ( góc D1 + A2) = 180o- 90o

<=> Góc ACD = 90o ( tổng 3 góc trong của tam giác ACD)

Xét tam giác ABC và tam giác ACD, ta có:

Góc BAC = ACD (= 90o)

AB= CD ( cmt)

AC chung

=> Tam giác ABC = tam giác CDA ( c.g c) => BC = AD

Mà theo cách dựng điểm D: MA = MD = \(\frac{1}{2}\)AD

Từ đó: => AM = \(\frac{1}{2}\)BC

Hay là trong 1 tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\)cạnh huyền.

=> Đpcm

Chúc bn hk tốt ^^ Mk k biết viết các kí hiệu mong bn thông cảm
 

 

 

 



 

 

 

 

 

28 tháng 11 2016

giỏi v~batngo

5 tháng 8 2021

https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html

Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình

 

5 tháng 8 2021

đây là hình ạ

D A B M C

16 tháng 11 2018

 Cách khác (theo cách lớp 7):

A B C D 2 1

Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)

Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)

+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)

Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)

+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)

Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

24 tháng 9 2017

Xét tam giác ABC vuông tại A. Gọi K là trung điểm của BC,

Theo chứng minh phần a ta có: KA = KB = KC

Suy ra: KA = BC/2

Vậy tam giác ABC vuông tại A có đường trung tuyến AK bằng nửa cạnh huyền BC.

13 tháng 10 2017

Lấy DD đối xứng với AA qua MM.

Xét △ABM△ABM△CDM△CDM, ta có:

ˆM1=ˆM2(đối đỉnh)MB=MC(=12BC)MA=MD(=12AD)⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭⇒△ABM=△DCM (c.g.c)⇒{AB=CDˆA1=ˆD1M1^=M2^(đối đỉnh)MB=MC(=12BC)MA=MD(=12AD)}⇒△ABM=△DCM (c.g.c)⇒{AB=CDA1^=D1^

Mặt khác, ta có:

ˆA1+ˆA2=ˆBAC=90∘⇔ ˆD1+ˆA2=90∘⇔ 180∘−(ˆD1+ˆA2)=180∘−90∘⇔ ˆACD=90∘( tổng ba góc trong của △ACD)A1^+A2^=BAC^=90∘⇔ D1^+A2^=90∘⇔ 180∘−(D1^+A2^)=180∘−90∘⇔ ACD^=90∘( tổng ba góc trong của △ACD)

Xét △ABC△ABC△ACD△ACD, ta có:

ˆBAC=ˆACD(=90∘)AB=CD(cmt)AC chung⎫⎪ ⎪⎬⎪ ⎪⎭⇒△ABC=△CDA (c.g.c)⇒BC=ADBAC^=ACD^(=90∘)AB=CD(cmt)AC chung}⇒△ABC=△CDA (c.g.c)⇒BC=AD

Mà theo cách dựng điểm DD: MA=MD=12ADMA=MD=12AD

Từ đó ta suy ra AM=12BCAM=12BC

Hay là trong 1 tam giác vuông, trung tuyến ứng với cạnh huyền bằng 1212 cạnh huyền.

topic133641.png

2 tháng 5 2016

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền. 

Chúc thành công

2 tháng 5 2016

Tam giác vuông ABC, vuông tại A, có AM là trung tuyến 
trên tia đối của MA lấy điểm D sao cho MD=AM 
Do đó AM=1/2 AD (1) 
suy ra tứ giác ABDC là hình bình hành, có ^A=90* 
nên ABDC là hình chữ nhật 
suy ra AD=BC (2) 
Từ (1) và (2) ta có AM = 1/2 BC 
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.