tim x sao cho \(\frac{9}{1+\sqrt{x}}\) la so nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
ngu như con bò tót, ko biết 1+1=2.
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
\(A=1+\frac{4}{\sqrt{x}-3}\)
để \(A\in Z\)thì \(\frac{4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1;\pm2;\pm4\right\}\)
đến đây xét từng trường hợp rồi đối chiếu điều kiện là xong
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
x = 0; 4
Để \(\frac{9}{1+\sqrt{x}}\) là số nguyên
=> 9 chia hết cho 1 + Vx
=> 1 + Vx thuộc Ư(9) = {1 ; -1 ; 3 ; -3 ; 9 ; -9}
Xét 6 trường hợp , ta có :
1 + Vx = 1 => Vx = 0 => x = 0
1 + Vx = -1 => Vx = -2 => x thuộc O
1 + Vx = 3 => Vx = 2 => x = 4
1 + Vx = -3 => Vx = -4 => x thuộc O
1 + Vx = 9 => Vx = 8 => x = 64
1 + Vx = -9 => Vx = -10 => x thuộc O
Vậy x = 0 ; 4 ; 64
ps: Vx là căn bậc 2 của x nha