K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

Ta có hình vẽ:

A B C H 1 2 1 2

Vẽ AH là phân giác của BAC => A1 = A2 (*)

Δ CAH có: C + A1 + H1 = 180o (1)

Δ BAH có: B + A2 + H2 = 180o (2)

Từ (1); (2) kết hợp với (*) và C = B (gt) => H1 = H2

Xét Δ CAH và Δ BAH có:

A1 = A2 (cmt)

AH là cạnh chung

H1 = H2 (cmt)

Do đó, Δ CAH = Δ BAH (g.c.g)

=> AC = AB (2 cạnh tương ứng)

Như vậy, Δ ABC là tam giác cân tại A (đpcm)

26 tháng 2 2021

Dpcm là gì

15 tháng 12 2016

đăng từng câu thui chứ!!!!!ucche

19 tháng 12 2016

đăng mấy câu thì kệ họ đâu liên quan j tới ông mà ns

Xét ΔABC có \(\widehat{B}=\widehat{C}\)

mà cạnh đối diện của góc B là cạnh AC

và cạnh đối diện của góc C là cạnh AB

nên AB=AC

- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụngm giác là tam giác cân.(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?(3) Thế nào là tam giác vuông cân? (4) Thế...
Đọc tiếp

- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụng

m giác là tam giác cân.

(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.

(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau

(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?

(3) Thế nào là tam giác vuông cân? (4) Thế nào là tam giác đều? (5) Nêu các tính chất của tam giác cân. (6) Nêu các tính chất của tam giác vuông cân. (7) Nêu các tính chất của tam giác đều. c) Đố bạn nêu chính xác các tính chất sau: (1) Nếu ba cạnh của tam giác này .... tam giác kia, thì hai tam giác đó bằng

(2) Nếu hai cạnh và góc xen giữa của tam giác này .... tam giác kia, thì giác đó bằng nhau.

(3) Nếu một cạnh và hai góc kề của tam giác này .... tam giác kia, thì hai ta đó bằng nhau.

(4) Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vụ .... tam giác vuông kia, thì hai tam giác đó bằng nhau.

(5) Nếu cạnh huyền và một góc nhọn của tam giác vuông này .... tam giá kia, thì hai tam giác đó bằng nhau. | (6) Nếu hai cạnh góc vuông của tam giác vuông này .... tam giác vuông ki tam giác đó bằng nhau.

6 tính chất tam giác vuông cân

(7) Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này .... vuông kia, thì hai tam giác đó bằng nhau.

(8) Trong một tam giác vuông, bình phương của cạnh huyền bằng... cạnh g (9) Nếu một tam giác có bình phương của một cạnh bằng... đó là tam gi

 

0
28 tháng 11 2017

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

31 tháng 3 2016

 Giả sử ∆ABC  có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác  => GB = BM; GC = CN  mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G =>  do đó ∆BCN = ∆CBM vì:  BC là cạnh chung CN = BM (gt)  (cmt) =>   =>  ∆ABC  cân tại A 

31 tháng 3 2016

định lí đảo mà bạn

27 tháng 3 2016

sach toán 7 tập 2 bạn ơi

27 tháng 3 2016

định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau

giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB) 

suy ra  B=C và

AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC

xét tam giác DBC và tam giác ECB có:

EB=DC(cmt)

BC(chung)
B=C(tam giác ABC cân tại A)

suy ra tam giac sDBC=ACB(c.g.c)

suy ra EC=BD

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

19 tháng 4 2017

Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G

=> G là trọng tâm của tam giác

=> GB = BM; GC = CN

mà BM = CN (giả thiết) nên GB = GC

=> ∆GBC cân tại G => GCB^=GBC^

do đó ∆BCN = ∆CBM vì:

BC là cạnh chung

CN = BM (gt)

GCB^=GBC^ (cmt)

=> NBC^=MCB^ => ∆ABC cân tại A