chứng minh hai số sau nguyên tố cùng nhau:
5n+9 và 4n+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN( 5n + 9 ; 4n + 7 ) ( d ∈ N )
Ta có : 5n + 9 ⋮ d và 4n + 7 ⋮ d
=> 4( 5n + 9 ) ⋮ d và 5( 4n + 7 ) ⋮ d
=> 20n + 36 ⋮ d và 20n + 35 ⋮ d
=> ( 20n + 36 ) - ( 20n + 35 ) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN(5n + 9;4n + 7 ) = 1 nên 5n + 9 và 4n + 7 là nguyên tố cùng nhau ( đpcm )
Gọi d là Ước chung lớn nhất của 5n+9 và 4n+7
=> 5n+9 chia hết cho d
4n+7 chia hết cho d
=> 4( 5n + 9 ) - 5( 4n + 7 ) chia hết cho d
=> ( 20n + 36 ) - ( 20n + 35 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 5n+9 và 4n+7 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d
=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d
=>35n+50 chia hết cho d; 35n+49 chia hết cho d
=>(35n+50)-(35n+49) chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n
a) Gọi d > 0 \(\in\) ƯC(7n+10;5n+7)
\(\Rightarrow\) d \(\in\) Ư [5.(7n+10) = 35n +50]
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) - (35n +49) =1
\(\Rightarrow\) d là ước số của 1 \(\Rightarrow\) d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
b) Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
\(\Rightarrow\) d \(\in\) Ư [2(2n + 3) = 4n + 6]
(4n + 8) - (4n + 6) = 2
\(\Rightarrow\) d \(\in\) Ư(2) \(\Rightarrow\) d \(\in\) {1,2}
d = 2 không là ước số của số lẻ 2n+3 \(\Rightarrow\) d = 1
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau.
Gọi \(ƯC\left(4n-5;5n-6\right)=d\)
\(\Rightarrow4n-5⋮d,5n-6⋮d\)
\(\Rightarrow4\left(5n-6\right)-5\left(4n-5\right)⋮d\)
\(\Rightarrow\left(20n-24\right)-\left(20n-25\right)⋮d\)
\(\Rightarrow20n-24-20n+25⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 4n - 5 và 5n - 6 là 2 số nguyên tố cùng nhau.
Gọi UCLN của hai số đó là d , ta có:
4n + 3 chia hết cho d => 20n + 15 chia hết cho d
5n +1 chia hết cho d => 20n + 4 chia hết cho d
=> 20 n + 15 - 20n + 4 chia hết cho d
Mà 20n + 15 - 20n +4 = 11 là Snt => .................
Gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
Vậy _________________
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
=> d là ước số của 2(2n + 3) = 4n + 6
(4n + 8) - (4n + 6) = 2
=> d là ước số của 2 => d=1,2
d = 2 không là ước số của số lẻ 2n+3 => d = 1
Vậy __________________
Gọi \(ƯCLN\left(5n+9,4n+7\right)\) là d
\(\Rightarrow\begin{cases}5n+9⋮d\\4n+7⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}4\left(5n+9\right)⋮d\\5\left(4n+7\right)⋮d\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}20n+36⋮d\\20n+35⋮d\end{cases}\)
\(\Rightarrow\left(20n+36\right)-\left(20n+35\right)⋮d\)
\(\Rightarrow\left(20n+36-20n-35\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vì : \(d=1\Rightarrow\) 5n +9 và 4n + 7 là hai số nguyên tố cùng nhau
Vậy ...
cảm ơn bạn