BT13 : Lớp 8A có 32 học sinh, lớp 8B có 48 học sinh và lớp 8C có 56 học sinh. Trong ngày khai giảng, ba lớp xếp hàng thàng các hàng ngang bằng nhau mà không lớp nào có người lẻ hàng. Tính số hàng ngang nhiều nhất có thể xếp được? Khi đó, mỗi hàng có bao nhiêu học sinh?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ƯCLN(32;48;56)=8
=>Có thể xếp được nhiều nhất là 8 hàng dọc
Số hàng ngang ở lớp 8A là 32/8=4 hàng
Số hàng ngang ở lớp 8B là 48/8=6 hàng
Số hàng ngang ở lớp 8C là 56/8=7 hàng
Số hàng dọc nhiều nhất có thể xếp đc là 6 hàng.
Khi đó:
Lớp 6A mỗi hàng có 9 bạn.
Lớp 6B mỗi hàng có 7 bạn.
Lớp 6C mỗi hàng có 8 bạn.
Chúc bn iu học tốt!
a: Số hàng dọc nhiều nhất có thể xếp được là:
ƯCLN(54;42;48)=6(hàng)
b: Tổng số học sinh là 54+42+48=144 bạn
Mỗi hàng có 144/6=24 bạn
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Gọi số hàng dọc là a (a ∈ N*)
Khi đó ta có: 54 ⋮ a, 42 ⋮ a, 48 ⋮ a và a lớn nhất.
Do đó a là ƯCLN(54,42,48).
Tính được : a = 6.
Vậy, xếp được nhiều nhất là 6 hàng dọc
Gọi a (hàng) là số hàng dọc nhiều nhất có thể xếp được. Ta có a = ƯCN(45,42,48)
Suy ra a = 3
Vậy số hàng dọc nhiều nhất có thể xếp được là 3 hàng.
Vì số học sinh xếp đủ nên số hàng dọc là ước chung của số học sinh 3 lớp
Số hàng dọc nhiều nhất cũng là ước chung lớn nhất của số học sinh ba lớp
Ta có: 54 = 2.33 42 = 2.3.7 48 = 24.3
ƯCLN(54; 42; 48) = 2.3 = 6
Vậy số hàng dọc nhiều nhất xếp được là 6 hàng
Gọi số hàng có thể chia là x
Theo đề, ta có: \(x\in BC\left(32;48;56\right)\)
mà x lớn nhất
nên x=8