BT10 : Tìm x biết:
4) x + 8 \(⋮\) x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{x}=\frac{x}{x}+\frac{4}{x}\)
\(\Rightarrow x\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Ta có :
\(x+4⋮x\)
=> \(x+4-x⋮x\)
=> \(4⋮x\)
=> \(x\inƯ_4\)
=> x\(\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\frac{x+5}{x+1}=\frac{x+4+1}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}\)
\(\Rightarrow x+1\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{0;1;3;-2;-3;-5\right\}\)
x+5\(⋮\)x+1
x+1+4\(⋮\)x+1
Vì x+1\(⋮\)x+1
Buộc 4\(⋮\)x+1=>x+1ϵƯ(4)={1;2;4}
Với x+1=1=>x=0
x+1=2=>x=1
x+1=4=>x=3
Vậy xϵ{0;1;3}
\(\frac{x+1+3}{x+1}=\frac{x+1}{x+1}+\frac{3}{x+1}\)
\(\Rightarrow x+1\in\text{Ư}\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Ta có :
\(x+1+3⋮x+1\)
=> \(x+1+3-\left(x+1\right)⋮x+1\)
=> \(3⋮x+1\)
=> \(x+1\inƯ_3\)
=> \(x+1\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{0;2;-2;-4\right\}\)
Ta có :
\(9⋮2x+1\)
=> \(2x+1\inƯ_9\)
=> \(2x+1\in\left\{1;3;9\right\}\)
=> \(2x\in\left\{0;2;8\right\}\)
=> \(x\in\left\{0;1;4\right\}\)
Vậy \(x\in\left\{0;1;4\right\}\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\text{x}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=1\)
\(\Leftrightarrow4\text{x}+\frac{15}{16}=1\)
\(\Leftrightarrow4\text{x}=1-\frac{15}{16}\)
\(\Leftrightarrow4\text{x}=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{16}:4=\frac{1}{64}\)
(x+1/2)+(x+1/4)+(x+1/8)+(x+16)=1
(x.x.x.x)+(1/2+1/4+1/8+1/16=1
4x+(1/2+1/4+1/8+1/16)=1
4x+(8/16+4/16+2/16+1/16)=1
4x+15/16=1
4x=1-15/16
4x=1/16
x=1/16:4
=>x=1/64
tick cho mk nha bạn
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}\right)=1\)
\(4x+\left(1-\frac{1}{16}\right)=1\)
\(4x+\frac{15}{16}=1\)
\(4x=\frac{1}{16}\)
\(\Rightarrow x=\frac{1}{64}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(4x+\frac{15}{16}=1\)
\(4x=\frac{1}{16}\)
\(x=\frac{1}{16}\div4\)
\(x=\frac{1}{64}\)
Vậy ...
Giải:
Ta có:
\(x+8⋮x+1\)
\(\Rightarrow\left(x+1\right)+7⋮x+1\)
\(\Rightarrow7⋮x+1\)
\(\Rightarrow x+1\in\left\{1;-1;7;-7\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
+) \(x+1=7\Rightarrow x=6\)
+) \(x+1=-7\Rightarrow x=-8\)
Vậy \(x\in\left\{0;-2;6;-8\right\}\)
\(\frac{x+8}{x+1}=\frac{x+7+1}{x+1}=\frac{x+1}{x+1}+\frac{7}{x+1}\)
\(\Rightarrow x+1\in\text{Ư}\left(7\right)=\left\{1;7;-1;-7\right\}\)
\(\Rightarrow x\in\left\{0;6;-2;-8\right\}\)