K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\)

+ \(\frac{a}{b}\)=\(\frac{a}{b}\).\(\frac{a}{b}\)=\(\frac{a^2}{b^2}\) (1)

+ \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{ac}{bd}\) (2)

Từ (1); (2) => \(\frac{a}{b}\)=\(\frac{c}{d}\)=>\(\frac{a^2}{b^2}\)=\(\frac{ac}{bd}\)

22 tháng 11 2016

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}=\left(\frac{c}{d}\right)^2=\frac{a.c}{b.d}\left(ĐPCM\right)\)

 

19 tháng 11 2016

d)\(\frac{a^2}{b^2}=\frac{ac}{bd}\)

14 tháng 6 2016

Giả sử tất cả các tỷ lệ thức đều có nghĩa.

Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

 \(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

Tương tự từ tỷ lệ thức ban đầu \(\frac{a}{b}=\frac{c}{d}\)cũng suy ra: \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

28 tháng 10 2016

Ta có:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a^2+b^2+a.b}{c^2+d^2+c.d}=\frac{a^2+a.b+b^2+a.b}{c^2+c.d+d^2+c.d}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a\left(a+b\right)+b\left(a+b\right)}{c\left(c+d\right)+d\left(c+d\right)}=\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)

\(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{a.b}{c.d}\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}\)

\(\Rightarrow\frac{ca+cb}{ca+ad}=\frac{bc+bd}{ad+bd}=\frac{ca+bd}{ca-bd}=1\)

\(\Rightarrow ca+cb=ca+ad\)

\(\Rightarrow cb=ad\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

28 tháng 10 2016

cảm ơn vui

27 tháng 11 2016

a/ do \(\frac{a}{b}\) = \(\frac{c}{d}\) =  \(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(điều phải suy ra)

bạn viết sai đề bài b nhé phân số đầu là \(\frac{2a+3c}{2b+3d}\)

b/ đặt  \(\frac{a}{b}\)\(\frac{c}{d}\) là K

a=Kb;c=Kd

ta có:\(\frac{2a+3c}{2b+3d}\)\(\frac{2Kb+3Kd}{2b+3d}\) = \(\frac{k\left(2b+3d\right)}{2b+3d}\) = K (1)

\(\frac{2a-3c}{2b-3d}\) = \(\frac{2Kb-3Kd}{2b-3d}\) = \(\frac{k\left(2b-3d\right)}{2b-3d}\) =K (2)

từ (!) và (2) suy ra \(\frac{2a+3c}{2b+3d}\) = \(\frac{2a-3c}{2b-3d}\)

14 tháng 6 2016

Giả sử tất cả các tỷ lệ thức đều có nghĩa.

Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

10 tháng 11 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

Vậy ...

10 tháng 11 2018

Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)

          \(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)

Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

2 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2) ->Đpcm

9 tháng 10 2020

Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)

Còn ý b làm tương tự nha!