Cho S =1 +3 +3^2 +3^3 +......+3^30
a)Tìm tổng của S dưới dạng lũy thừa.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
1. A = 1 + 2 + 22 + ... + 2200
=> 2A = 2 + 22 + ... + 2200 + 2201
=> 2A - A = 2201 - 1
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
2. B = 3 + 32 + 33 + ... + 32005
=> 3B = 32 + 33 + ... + 32005 + 32006
=> 3B - B = 32006 - 3
=> 2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3 = 32006 (là lũy thừa của 3)
=> đpcm
@hanie anh
1.
a) \(3^4\times3^5\times3^6=3^{4+5+6}=3^{15}\)
b) \(5^2\times5^4\times5^5\times25=5^2\times5^4\times5^5\times5^2=5^{2+4+5+2}=5^{13}\)
c) \(10^8\div10^3=10^{8-3}=10^5\)
d) \(a^7\div a^2=a^{7-2}=a^5\)
2.
\(987=900+80+7\\ =9\times100+8\times10+7\\ =9\times10^2+8\times10^1+7\times10^0\)
\(2021=2000+20+1\\ =2\times1000+2\times10+1\times1\\ =2\times10^3+2\times10^1+1\times10^0\)
\(abcde=a\times10000+b\times1000+c\times100+d\times10+e\times1\\ =a\times10^4+b\times10^3+c\times10^2+d\times10^1+e\times10^0\)
\(2S=2^3+2^3+2^4+...+2^{21}\\ S=2^{21}+2^3-2^2-2^2=2^{21}+8-4-4=2^{21}\)
a, 3.3.3.3=34
b,6.6.3.3.2.2=62.32.22=(6.3.2)2=302
c, 20.10.y.y= 22.5.2.5.y2=23.52.y2=23.(5.y)2
d, m.m.m+n.n= m3.n2
Bạn nhớ k cho mình nha! Cảm ơn bạn!
1) A = 1+2+2\(^2\) + ... + \(2^{200}\)
2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)
2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)
A = 2\(^{201}\) - 1
A+1 = 2\(^{201}\)
Vậy a + 1 = 2\(^{201}\)
2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)
3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)
3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)
2C = 3\(^{2006}\) - 3
2C+3 = 3\(^{2006}\)
Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )
Ta có: +) \({({2^2})^3} = {2^2}{.2^2}{.2^2} = {2^{2 + 2 + 2}} = {2^6}\)
+) \({\left[ {{{( - 3)}^2}} \right]^2} = {( - 3)^2}.{( - 3)^2} = {( - 3)^{2 + 2}} = {( - 3)^4}\)
S = 1 + 3 + 32 + 33 + ... + 330
3S = 3 + 32 + 33 + 34 +... + 331
3S - S = 331 + 330 - 330 + ... + 34 - 34 + 33 - 33 + 32 - 32 + 3 - 3 - 1
(3 - 1)S = 331 - 1
2S = 331 - 1
\(\Rightarrow S=\frac{3^{31}-1}{2}\)