K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

@Trần Thanh Phương

@Akai Haruma

@Lê Thị Thục Hiền

3 tháng 9 2019

@Lê Thị Thục Hiền

13 tháng 12 2017

Ta có: \(x^2+\frac{1}{x^2}=7\)

\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)

Mà x>0

\(\Rightarrow x+\frac{1}{x}=3\)

Lại có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)=3\left(7-1\right)=18\)

\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}\)

\(\Rightarrow x^5+\frac{1}{x^5}=7.18-3=123\)

6 tháng 10 2018

\(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2=7+2=9\)

\(\Rightarrow x+\frac{1}{x}=3\) (vì x > 0)

Mặt khác, \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=3^3-3.3=18\)

Ta có: \(B=x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

                                      \(=7.18-3=123\)

Vậy B = 123

Chúc bạn học tốt.

                            

2 tháng 3 2021

Ta có : 

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)\)

\(=\left(x+\frac{1}{x}\right)\left(7-1\right)\)(vì \(x^2+\frac{1}{x^2}=7\))

\(=6\left(x+\frac{1}{x}\right)\)

Đặt \(x+\frac{1}{x}=a\)thì \(\left(x+\frac{1}{x}\right)=a^2\). Suy ra \(a^2-2=x^2+\frac{1}{x^2}\)

\(\Rightarrow a^2-2=7\)(vì \(x^2+\frac{1}{x^2}=7\))

\(\Rightarrow a^2=9\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)

Vì \(x\inℝ,x>0\)nên \(x+\frac{1}{x}>0\)

\(\Rightarrow\) \(\left(x+\frac{1}{x}\right)^2=3^2\Rightarrow x+\frac{1}{x}=3\)

Do đó \(x^3+\frac{1}{x^3}=6.3=18\)

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+1\)

Mà \(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7.18=126\)

\(\Rightarrow x^5+\frac{1}{x^5}+1=126\)

\(\Rightarrow x^5+\frac{1}{x^5}=125\)

Vậy với \(x\inℝ,x>0\)và \(x^2+\frac{1}{x^2}=7\)thì \(x^5+\frac{1}{x^5}=125\)

13 tháng 2 2019

ta có \(x^2+\frac{1}{x^2}\)

=\(\left(x+\frac{1}{x}\right)^2-2x\frac{1}{x}=\left(x+\frac{1}{x}\right)^2-2\)

=> \(\left(x+\frac{1}{x}\right)^2=25.vì\)\(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=5\)

\(\left(x+\frac{1}{x}\right)^3=x^3+\frac{1}{x^3}+3x+\frac{3}{x}=x^3+\frac{1}{x^3}+15\)

\(\Rightarrow x^3+\frac{1}{x^3}=5^3+15=110\)

\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}=x^5+\frac{1}{x^5}+5\)

\(\Rightarrow x^5+\frac{1}{x^5}=23\cdot110-5=2525\)

Vậy...

9 tháng 7 2016

\(x^2+\frac{1}{x^2}=7\Leftrightarrow x^2+2+\frac{1}{x^2}=9\Leftrightarrow\left(x+\frac{1}{x}\right)^2=3^2.\)Do x > 0 nên \(x+\frac{1}{x}\)>0 và  \(x+\frac{1}{x}=3\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^3=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot x\cdot\frac{1}{x}\left(x+\frac{1}{x}\right)=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot3=27\Rightarrow x^3+\frac{1}{x^3}=18\)

\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7\cdot18\Rightarrow x^5+\frac{1}{x^5}+x+\frac{1}{x}=126\Rightarrow x^5+\frac{1}{x^5}+3=126\Rightarrow x^5+\frac{1}{x^5}=123.\)

Vậy \(x^5+\frac{1}{x^5}\)là 1 số nguyên và bằng: 123

8 tháng 6 2019

(x+\(\frac{1}{x}\))2=9⇒x+\(\frac{1}{x}\)=3 ; (x2+\(\frac{1}{x^2}\))2=49⇒x4+\(\frac{1^{ }}{x^4}\)=47 và (x+\(\frac{1}{x}\))(x2+\(\frac{1}{x^2}\))=x3+\(\frac{1}{x^3}\)+x+\(\frac{1}{x}\)=21⇒x3+\(\frac{1}{x^3}\)=18

⇒(x+\(\frac{1}{x}\))(x4+\(\frac{1}{x^4}\))=141

⇒x5+\(\frac{1}{x^3}\)+x3+\(\frac{1}{x^5}\)=141

⇒x5+\(\frac{1}{x^5}\) =141-18=123

8 tháng 2 2021

P/s: lần sau đăng hẳn câu hỏi lên đừng có kiểu đăng như thế này, không ai muốn làm đâu

Bài này sai ngay từ đầu rồi-.-

Bài làm:

Ta có: \(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2\cdot x\cdot\frac{1}{x}=7\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\)

\(\Rightarrow x+\frac{1}{x}=3\left(x>0\right)\)

Bây giờ thì dùng tam giác Pascal mà khai triển ra thôi

\(\left(x+\frac{1}{x}\right)^5=x^5+5x^4\cdot\frac{1}{x}+10x^3\cdot\frac{1}{x^2}+10x^2\cdot\frac{1}{x^3}+5x\cdot\frac{1}{x^4}+\frac{1}{x^5}\)

\(=x^5+5x^3+10x+\frac{10}{x}+\frac{5}{x^3}+\frac{1}{x^5}=\left(x^5+\frac{1}{x^5}\right)+5\left(x^3+\frac{1}{x^3}\right)+10\left(x+\frac{1}{x}\right)\)

\(\Rightarrow x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5\left(x^3+\frac{1}{x^3}\right)-10\left(x+\frac{1}{x}\right)\)

\(=3^5-5\left(x+\frac{1}{x}\right)\left(x^2-x\cdot\frac{1}{x}+\frac{1}{x^2}\right)-10\cdot3\)

\(=243-5\cdot3\cdot\left(7-1\right)-30=123\)

Vậy \(x^5+\frac{1}{x^5}=123\)