K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

(2x - 3)2 + |y| = 1

\(\Rightarrow\left(2x-3\right)\le1\)

Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)

nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)

Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)

22 tháng 11 2016

2 cặp

22 tháng 11 2017

x=3/2 ; y=3 hoặc x=2 ; y = 2

k mk nha

29 tháng 3 2017

Ta có :(2x+1).y=2

Suy ra 2x+1 thuộc ước của 2;y thuộc ước của 2

Ta có bảng sau

2x+11-12-2
y2-21-1
x0-11/2(loại)-3/2(loại)

Vậy có tất cả 2 cặp

1 tháng 4 2017

2 nha bạn

16 tháng 2 2020

4 nha ban

15 tháng 7 2015

(2x+1)y = 2

Mà x; y là số âm; 2x+1 là số lẻ

=> y = -2; 2x+1= -1

=> x = -1

KL: x = -1

      y = -2

13 tháng 3 2017

có 1 cặp

26 tháng 7 2019

Có:

\(2x^2+1=y^2-yx^2\)

<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)

=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau

=> \(x^2⋮\left(y+1\right)\)

Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)

Ta có phương trình : \(t\left(y+2\right)=y-1\)

,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí

+) Với y khác -2

Chia ca hai vế cho y+2 ta có:

\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)

Tìm y để t thuộc Z

Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}

+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)

+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)

+) y+2=1  => y=-1 => t=-2 => x^2= 0  => x=0 

+) y+2 =3 => y=1 => t=0 => x^2 =0  => x=0

THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn

Vậy ...

NV
31 tháng 1 2021

1.

\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\)  \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)

- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp

- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp

Tổng cộng có 8 cặp số nguyên thỏa mãn

2.

\(x\left(y+3\right)=7y+21+1\)

\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)

\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)

\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp