K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

A = |x - 5| + |x - 7|

A = |x - 5| + |7 - x|

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\begin{cases}x-5\ge0\\7-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge5\\x\le7\end{cases}\)\(\Rightarrow5\le x\le7\)

Vậy GTNN của A là 2 khi \(5\le x\le7\)

a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x

=> ( x-2)2 +2023 \(\ge\) 2023

Vậy ...

Dấu bằng xảy ra khi x-2 = 0

b. (x-3)2+(y-2)2-2018

Ta có: \((x-3)^2 \ge0,\forall x\)

           \((y-2) ^2 \ge0,\forall y\) 

=> ( x-3)2 + ( y-2)2 \(\ge\) 0

=>  ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y 

Vậy ...

Dấu bằng xảy ra khi x-3=0

                                 y-2=0

c. ( x+1)2 +100

Ta có : ( x+1)2 \(\ge0,\forall x\) 

=> ( x+1)2+100 \(\ge\) 100

Vậy ...

Dấu bằng xảy ra khi x+1=0

10 tháng 7 2023

a) -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2003

Ta có:

(3 - x)¹⁰⁰ ≥ 0

⇒ -(3 - x)¹⁰⁰ ≤ 0

(y + 2)²⁰⁰ ≥ 0

⇒ -3(y + 2)²⁰⁰ ≤ 0

⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ ≤ 0 

⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2023 ≤ 2023

Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = 3 và y = -2

b) (x² + 3)² + 125

= x⁴ + 6x² + 9 + 125

= x⁴ + 6x² + 134

Ta có:

x⁴ ≥ 0

x² ≥ 0

⇒ 6x² ≥ 0

⇒ x⁴ + 6x² ≥ 0

⇒ x⁴ + 6x² + 134 ≥ 134

⇒ (x² + 3)² + 125 ≥ 134

Vậy giá trị nhỏ nhất của biểu thức đã cho là 134

c) -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022

Ta có:

(x - 20)²⁰⁰ ≥ 0

⇒ -(x - 20)²⁰⁰ ≤ 0

(y + 5)¹⁰⁰ ≥ 0

⇒ -2(y + 5)¹⁰⁰ ≤ 0

⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ ≤ 0

⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022 ≤ 2022

Vậy giá trị lớn nhất của biểu thức đã cho là 2022 khi x = 20 và y = -5

16 tháng 9 2018

D=(x-1)(x+5)(x-3)(x+7)

=(x2+4x-5)(x2+4x-21)

=(x2+4x-5)2-16(x2+4x-5)

=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64

21 tháng 5 2020

x=-6 thì D có giá trị nhỏ nhất là: -70

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
9 tháng 2 2020

Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0

vì vậy min của T =0

9 tháng 2 2020

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)

\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)

\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)

\(\Rightarrow T\ge|43|\)

\(\Rightarrow T\ge43\)

Vậy \(Min_T=43\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$

$=a(a+2)$ (đặt $x^2-5x+4=a$)

$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$

Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$

$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$