Cho các số a;b;c;x;y;z là các số thực khác 0 thỏa mản
\(\frac{xy}{ay+bx}\)=\(\frac{yz}{bz+cy}\)=\(\frac{zx}{cx+az}\)=\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Tính B= \(\frac{a}{x}\)+\(\frac{b}{y}\)+\(\frac{c}{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{980;5975\right\}\\ B=\left\{627;49137\right\}\\ C=\left\{980\right\}\)
Lời giải:
a. $A=\left\{30;33;35;50;53;55\right\}$
b. $B=\left\{80;71;62;53;44;35;26;17\right\}$
c. $C=\left\{10;21;32;43;54;65;76;87;98\right\}$
d. $D=\left\{14;25;36;47;58;69\right\}$
Giải:
a) \(A=\left\{30;33;35;50;53;55\right\}\)
b) \(B=\left\{17;26;35;44;53;62;71;80\right\}\)
c) \(C=\left\{10;21;32;43;54;65;76;87;98\right\}\)
d) \(D=\left\{14;25;36;47;58;69\right\}\)
1a) A = { 980, 5975}
b) B = { 627, 49137,756598}
c) C = { 980 }
Lời giải:
Từ \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{az+cx}\Leftrightarrow \frac{1}{\frac{a}{x}+\frac{b}{y}}=\frac{1}{\frac{b}{y}+\frac{c}{z}}=\frac{1}{\frac{a}{x}+\frac{c}{z}}\)
Đặt \(\left (\frac{a}{x},\frac{b}{y},\frac{c}{z}\right)=(m,n,p)\Rightarrow \frac{1}{m+n}=\frac{1}{n+p}=\frac{1}{m+p}\)
Do đó \(m=n=p\). Thay \(n,p\) bằng \(m\)
\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}=m\Rightarrow a=mx,b=my,c=mz\)
\(\frac{1}{m+n}=\frac{1}{2m}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2+y^2+z^2}{m^2(x^2+y^2+z^2)}=\frac{1}{m^2}\)\(\Rightarrow m=2\)
Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=m+n+p=3m=3.2=6\)