K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2014

n không chia hết cho 3 => n chia 3 dư 1 hoặc dư 2

Nếu n chia cho 3 dư 1 thì n2 chia cho 3 cũng dư 1 vì số dư là 12 = 1.

Nếu n chia cho 3 dư 2 thì n2 chia cho 3 cũng dư 1 vì số dư là 22 = 4 chia 3 dư 1.

Vậy trong cả hai trường hợp n2 đều chia cho 3 dư 1

15 tháng 3 2015

đây là cái định lí muôn thuở cần biết để mà giải toán chia hết đấy

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

5 tháng 9 2016
bai nay mk lam dc 3 phan b ,c va d
5 tháng 9 2016

mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !

20 tháng 12 2019

Đang định hỏi thì ....

1 tháng 3 2018

Đây

Ta có: \(3^{2n}+3^n+1\)

Vì n không chia hết cho 3 nên: n có dạng là \(3k+1\)

Thế vào: Ta có: \(3^{6k+2}+3^{3k+1}+1\)

\(=729^k\cdot9+27^k\cdot3+1\)

Mặt khác: \(729\equiv27\equiv1\)(mod 13)

Do đó: \(729^k\cdot9+27^k\cdot3+1\equiv1\cdot9+1\cdot3+1=13\)(mod 13)

Vậy .............

P/s: Xét luôn trường hợp \(n=3k+2\)với cách làm tương tự trên