K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

a= {0;6;12}

22 tháng 11 2016

a={-42;-14;-8;0;6;12}

NV
7 tháng 4 2022

\(\Delta=\left(2m+3\right)^2-4\left(40-m\right)=4m^2+16m-151\)

Phương trình có nghiệm nguyên khi \(\Delta\) là số chính phương

\(\Rightarrow4m^2+16m-151=k^2\) với \(k\in Z\)

\(\Rightarrow\left(2m+4\right)^2-167=k^2\)

\(\Rightarrow\left(2m+4-k\right)\left(2m+4+k\right)=167=1.167=167.1=-1.\left(-167\right)=-167.\left(-1\right)\)

Bảng giá trị:

2m+4-k1167-1-167
2m+4+k1671-167-1
m4040-44-44

Vậy \(m=\left\{-44;40\right\}\)

7 tháng 8 2019

8 tháng 12 2018

Chọn: C

12 tháng 7 2018

Đáp án B

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

6 tháng 4 2018

Chọn C.

 

Bất phương trình

Đặt , khi đó bất phương trình trở thành x2-2tx-2t+3> 0     (*)

Bất phương trình (*) nghiệm đúng với mọi x  khi và chỉ khi  


Vậy có tất cả 7 giá trị nguyên của  a  thỏa mãn yêu cầu bài toán.

 

4 tháng 7 2021

\(\Delta=m^2-4\left(m-4\right)=\left(m^2-4m+4\right)+12=\left(m-2\right)^2+12>0;\forall m\)

Suy ra pt luôn có hai nghiệm pb với mọi m

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=m-4\end{matrix}\right.\)

\(\left(5x_1-1\right)\left(5x_2-1\right)< 0\)

\(\Leftrightarrow25x_1x_2-5\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow25\left(m-4\right)-5m+1< 0\)

\(\Leftrightarrow m< \dfrac{99}{20}\)

Vậy...

4 tháng 7 2021

\(\Delta=m^2-4m+16=\left(m-2\right)^2+12>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-4\end{matrix}\right.\)

Ta có: \(\left(5x_1-1\right)\left(5x_2-1\right)=25x_1x_2-5\left(x_1+x_2\right)+1\)

\(=25\left(m-4\right)-5m+1=20m-99\)

\(\Rightarrow20m-99< 0\Rightarrow m< \dfrac{99}{20}\)

1 tháng 12 2021

Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0

suy ra denta= (2m+1)^2-4.(m^2+1)>0

suy ra : m>3/4

Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)

 Ta có: P∈Z

⇒4P∈Z

⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z

⇒2m+1=Ư(5)={−5;−1;1;5}

⇒m={−3;−1;0;2} 

Kết hợp đk m>3/4 ta được m=2

 

 

NV
1 tháng 6 2021

\(\left(3^x-27\right)\left(x^2-x-20\right)\ge0\Leftrightarrow\left[{}\begin{matrix}-4\le x\le3\\x\ge5\end{matrix}\right.\)

\(\Rightarrow\) Có \(8+40-5+1=44\) nghiệm nguyên