Cho A = 1+3+3^2 + 3^3 + ......+3^2014
2B = 3^2015
Tinh B- A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(B=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
Mà \(2B+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy \(n=101\)
a)
B = 3 + 32 + 33 + ... + 3100
3B = 32 + 33 + 34 + ... + 3101
3B - B = 3101 - 3
⇒ 2B = 3101 - 3
⇒ 2B + 3 = 3101 - 3 + 3
⇒ 3n = 3101
⇒ n = 101
Vậy n = 101
B = 3 + 32 + 33 + ... + 32014 + 32015
3B = 3( 3 + 32 + 33 + ... + 32014 + 32015 )
3B = 32 + 33 + ... + 32015 + 32016
2B = 3B - B
= 32 + 33 + ... + 32015 + 32016 - ( 3 + 32 + 33 + ... + 32014 + 32015 )
= 32 + 33 + ... + 32015 + 32016 - 3 - 32 - 33 - ... - 32014 - 32015
= 32016 - 3
2B + 3 = 3x
<=> 32016 - 3 + 3 = 3x
<=> 32016 = 3x
<=> x = 2016
\(B+1=3^{2015}+3^{2014}+...+3^3+3^2+3+1\)
\(\Leftrightarrow2\left(B+1\right)=\left(3-1\right)\left(3^{2015}+3^{2014}+...+3^3+3^2+3+1\right)\)
\(\Leftrightarrow2B+2=3^{2016}-1\Leftrightarrow2B+3=3^{2016}\)
Vậy để \(2B+3=3^x\)thì x = 2016.
\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)
=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)
=>\(3B-B=3^2+3^3+3^4+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)
=>\(2B=3^{2016}-3\)
=>\(2B+3=3^{2016}\) là lũy thừa của 3
Lời giải:
$B=3+3^2+3^3+...+3^{2014}+3^{2015}$
$3B=3^2+3^3+3^4+....+3^{2015}+3^{2016}$
$\Rightarrow 2B=3B-B=3^{2016}-3$
$\Rightarrow 2B+3=3^{2016}$ là lũy thừa của $3$
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
\(B=3+3^2+3^3+...+3^{2014}+3^{2015}\)
=>\(3B=3^2+3^3+3^4+...+3^{2015}+3^{2016}\)
=>\(3B-B=3^2+3^3+...+3^{2015}+3^{2016}-3-3^2-3^3-...-3^{2014}-3^{2015}\)
=>\(2B=3^{2016}-3\)
=>\(2B+3=3^{2016}\) là lũy thừa của 3
Ta có :
\(S=1+3+3^2+....+3^{2014}\)
\(\Rightarrow\left(3-1\right)A=\left(3-1\right)1+\left(3-1\right)3+\left(3-1\right)3^2+....+\left(3-1\right)3^{2014}\)
\(\Rightarrow2A=3-1+3-3^2+....+3^{2015}-3^{2014}\)
\(\Rightarrow2A=3^{2015}-1\)
\(\Rightarrow2B-2A=3^{2015}-\left(3^{2015}-1\right)\)
\(\Rightarrow2B-2A=1\)
\(\Rightarrow2\left(B-A\right)=1\)
\(\Rightarrow B-A=\frac{1}{2}\)
S = 1 + 3 + 32 + ... + 32014
= > ( 3 - 1 ) A = ( 3 - 1 ) 1 + ( 3 - 1 ) 3 + ( 3 - 1 ) 32 + ... + ( 3 - 1 ) 32014
= > 2A = 3 - 1 + 3 - 32 + ... + 32015 - 32014
= > 2A = 32015 - 1
= > 2B - 2A = 32015 - ( 32015 - 1 )
= > 2B - 2A = 1
= > 2 ( B - A ) = 1
= > B - A = \(\frac{1}{2}\)
Vậy B - A = \(\frac{1}{2}\)