K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

\(A=\frac{3}{4x^2-4x+5}\)

\(=\frac{3}{4x^2-4x+1+4}\)

\(=\frac{3}{\left(2x-1\right)^2+4}\)

\(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\(MaxA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

15 tháng 11 2016

Đặt \(A=\frac{3}{4x^2-4x+5}\)

Biến đổi : \(4x^2-4x+5\)

\(=\left[\left(2x\right)^2-2.2x.1+1^2\right]+4\)

\(=\left(2x-1\right)^2+4\)

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

\(\Rightarrow A\le\frac{3}{4}\)

Dấu " = " xảy ra khi và chỉ khi \(2x-1=0\)

\(2x=1\)

\(x=\frac{1}{2}\)

Vậy \(Max_A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

 

 

23 tháng 10 2018

Ta có :

\(M=\frac{3}{4x^2-4x+5}=\frac{3}{\left(2x-1\right)^2+4}\)

Ta thấy \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow\left(2x-1\right)^2+4\ge4\)

Do đó  \(\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\)

( So sánh 2 phân thức cùng tử , tử và mẫu đều dương )

Vậy \(MaxM=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

P/s : Tự làm lại đầy đủ nhé . Mình có bớt 1 số chỗ không cần thiết lắm .

30 tháng 6 2017

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

2 tháng 12 2017

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

1 tháng 4 2019

Để B đạt GTLN thì \(4x^2+4x+3\) phải đạt GTNN

Ta có: \(4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\ge2\forall x\)

=> GTNN của 4x2 +4x +3 = 2 tại x = -1/2

=> GTLN của B = 3/2 tại x = -1/2

=.= hk tốt!!

29 tháng 11 2019

\(B=\frac{4-4x^2+4x}{5}=\frac{-\left(4x^2-4x-4\right)}{5}\)

\(=\frac{-\left(4x^2-4x+1\right)+5}{5}\)

\(=\frac{-\left(2x-1\right)^2+5}{5}\)

Ta có: \(-\left(2x-1\right)^2\le0\)

\(\Rightarrow-\left(2x-1\right)^2+5\le5\)

\(\Rightarrow\frac{-\left(2x-1\right)^2+5}{5}\ge1\)

Vậy \(B_{min}=1\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

28 tháng 12 2019

\(C=\frac{3}{4x^2-4x+5}\)

\(C=\frac{3}{4x^2-4x+1+4}\)

\(C=\frac{3}{\left(4x^2-4x+1\right)+4}\)

\(C=\frac{3}{\left(4x-1\right)^2+4}\)

Ta thấy: \(\left(4x-1\right)^2\ge0\Rightarrow\left(4x-1\right)^2+4\ge4\)

\(\Rightarrow\frac{3}{\left(4x-1\right)^2+4}\le\frac{3}{4}\)

\(Max_A=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

24 tháng 6 2017

A=\(\frac{3}{x^2+4x+5}\)

\(\Rightarrow\)A lớn nhất thì \(x^2+4x+5\)nhỏ nhất =1 

Vậy GTLN của A= 3 với x =-2.

6 tháng 1 2019

tham khảo

\(A=\frac{4x+1}{4x^2+2}=\frac{4x^2+2}{4x^2+2}-\frac{4x^2-4x+1}{4x^2+2}=1-\frac{\left(2x-1\right)^2}{4x^2+2}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

\(A=\frac{4x+1}{4x^2+2}=\frac{-\left(2x^2+1\right)}{4x^2+2}+\frac{2x^2+4x+2}{4x^2+2}=\frac{-1}{2}+\frac{2\left(x+1\right)^2}{4x^2+2}\ge\frac{-1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-1\)

15 tháng 5 2020

\(P=\frac{2019}{4x^2+4x+2020}\)

Để \(P\)max \(\Leftrightarrow4x^2+4x+2020\)min

Ta có : \(4x^2+4x+2020=4\left(x+\frac{1}{2}\right)^2+2019\ge2019\)

Dấu " = " xảy ra : \(\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(Max_P=1\Leftrightarrow x=-\frac{1}{2}\)