K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

giúp mình với mình đg gấp lắm

 

 

14 tháng 11 2016

Gọi d là ƯC(n+3;2n+5)

=> 2(n+3) - (2n+5) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ........

14 tháng 11 2016

Gọi d là ƯCLN(n+3,2n+5)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n + 6) - (2n + 5) \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

=> ƯCLN(n+3,2n+5) = 1

=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau

10 tháng 12 2018

gọi UCLN(2n+3, 3n+5) là d 
ta có 2n+5 chia hết cho d => 3(2n+3) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+5 chia hết cho d => 2(3n+5) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+3, 3n+5 ngtố cùng nhau(đpcm)

13 tháng 7 2018

Gọi d là ước chung của n + 1 và 3n + 4.

Ta có n + 1 ⋮ d nên 3( n+1) ⋮ d hay 3n + 3 ⋮ d

Lại có: 3n + 4 ⋮ d.

Suy ra (3n + 4) - (3n + 3) ⋮ d hay 1 ⋮ d

Do đó, d = 1.

Vậy n + 1 và 3n + 4 là hai số nguyên tố cùng nhau.

5 tháng 11 2015

a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1

Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6

Do m và n nguyên tố cùng nhau nên ta được như sau:

- Nếu m=1 thì a=42 và n=5 thì b=210

- Nếu m=5 thì a=210 và n=1 thì b=42

b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}

c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        3(2n+1) chia hết cho d và (6n+5) chia hết cho d

                                                        (6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2

Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1

Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)

 

 

12 tháng 11 2017

m n ở đâu

NV
4 tháng 1 2024

Gọi \(d=ƯC\left(n+3;2n+5\right)\) với \(d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\) \(\Rightarrow2\left(n+3\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(n+3\) và \(2n+5\) nguyên tố cùng nhau với mọi số tự nhiên n

Gọi d = ƯCLN(n + 3, 2n + 50 với d ∈ N

 

n+3d2n+5d ⇒2(�+3)−(2�+5)⋮�2(n+3)(2n+5)d

⇒1⋮�⇒�=11dd=1

Vậy �+3n+3 và 2�+52n+5 nguyên tố cùng nhau với mọi số tự nhiên n

 Đúng(0)
17 tháng 11 2018

Gọi d là ước chung lớn nhất của n + 1 và 3n + 4

Ta có: \(n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)

Mà \(3n+4⋮d\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\Rightarrow1⋮d\)

=> \(d\inƯ\left(1\right)\Rightarrow d=1\)

=> n + 1 và 3n + 4 nguyên tố cùng nhau (đpcm)

17 tháng 2 2018

Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.

17 tháng 2 2018

Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha